福建省三明一中2024屆高二數學第一學期期末綜合測試模擬試題含解析_第1頁
福建省三明一中2024屆高二數學第一學期期末綜合測試模擬試題含解析_第2頁
福建省三明一中2024屆高二數學第一學期期末綜合測試模擬試題含解析_第3頁
福建省三明一中2024屆高二數學第一學期期末綜合測試模擬試題含解析_第4頁
福建省三明一中2024屆高二數學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省三明一中2024屆高二數學第一學期期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.魏晉時期數學家劉徽首創割圓術,他在《九章算術》方田章圓田術中指出:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”這是注述中所用的割圓術是一種無限與有限的轉化過程,比如在正數中的“”代表無限次重復,設,則可以利用方程求得,類似地可得到正數()A.2 B.3C. D.2.直線的傾斜角,則其斜率的取值范圍為()A. B.C. D.3.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.4.設函數,當自變量t由2變到2.5時,函數的平均變化率是()A.5.25 B.10.5C.5.5 D.115.有6本不同的書,按下列方式進行分配,其中分配種數正確的是()A.分給甲、乙、丙三人,每人各2本,有15種分法;B.分給甲、乙、丙三人中,一人4本,另兩人各1本,有180種分法;C.分給甲乙每人各2本,分給丙丁每人各1本,共有90種分法;D.分給甲乙丙丁四人,有兩人各2本,另兩人各1本,有1080種分法;6.在平形六面體中,其中,,,,,則的長為()A. B.C. D.7.若橢圓與直線交于兩點,過原點與線段AB中點的直線的斜率為,則A. B.C. D.28.在正方體中,分別為的中點,為側面的中心,則異面直線與所成角的余弦值為()A. B.C. D.9.已知圓柱的表面積為定值,當圓柱的容積最大時,圓柱的高的值為()A.1 B.C. D.210.方程表示的曲線是()A.一個橢圓和一個點 B.一個雙曲線的右支和一條直線C.一個橢圓一部分和一條直線 D.一個橢圓11.已知遞增等比數列的前n項和為,,且,則與的關系是()A. B.C. D.12.已知、是橢圓和雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知實數x,y滿足約束條件,則的最小值為______.14.已知數列滿足,則的最小值為__________.的前20項和為________15.已知平面,過空間一定點P作一直線l,使得直線l與平面,所成的角都是30°,則這樣的直線l有______條16.若向量,且夾角的余弦值為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設命題p:,命題q:關于x的方程無實根.(1)若p為真命題,求實數m的取值范圍;(2)若為假命題,為真命題,求實數m的取值范圍18.(12分)已知函數,且a0(1)當a=1時,求函數f(x)的單調區間;(2)記函數,若函數有兩個零點,①求實數a的取值范圍;②證明:19.(12分)在平面直角坐標系xOy中,橢圓C:的左,右頂點分別為A、B,點F是橢圓的右焦點,,(1)求橢圓C的方程;(2)不過點A的直線l交橢圓C于M、N兩點,記直線l、AM、AN的斜率分別為k、、.若,證明直線l過定點,并求出定點的坐標20.(12分)已知三棱柱的側棱垂直于底面,,,,,分別是,的中點.(Ⅰ)證明:平面;(Ⅱ)求二面角的余弦值.21.(12分)等差數列中,,(1)求數列的通項公式;(2)若滿足數列為遞增數列,求數列前項和22.(10分)已知函數(1)當時,求的單調區間與極值;(2)若不等式在區間上恒成立,求k的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設,則,解方程可得結果.【詳解】設,則且,所以,所以,所以,所以或(舍).所以.故選:A【點睛】關鍵點點睛:設是解題關鍵.2、B【解析】根據傾斜角和斜率的關系,確定正確選項.【詳解】直線的傾斜角為,則斜率為,在上為增函數.由于直線的傾斜角,所以其斜率的取值范圍為,即.故選:B【點睛】本小題主要考查傾斜角和斜率的關系,屬于基礎題.3、D【解析】設直線傾斜角為,則,即可求出.【詳解】設直線的傾斜角為,則,又因為,所以.故選:D.4、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.5、D【解析】根據題意,分別按照選項說法列式計算驗證即可做出判斷.【詳解】選項A,6本不同的書分給甲、乙、丙三人,每人各2本,有種分配方法,故該選項錯誤;選項B,6本不同的書分給甲、乙、丙三人,一人4本,另兩人各1本,先將6本書分成4-1-1的3組,再將三組分給甲乙丙三人,有種分配方法,故該選項錯誤;選項C,6本不同的書分給甲乙每人各2本,有種方法,其余分給丙丁每人各1本,有種方法,所以不同的分配方法有種,故該選項錯誤;選項D,先將6本書分為2-2-1-14組,再將4組分給甲乙丙丁4人,有種方法,故該選項正確.故選:D.6、B【解析】根據空間向量基本定理、加法的運算法則,結合空間向量數量積的運算性質進行求解即可.【詳解】因為是平行六面體,所以,所以有:,因此有:,因為,,,,,所以,所以,故選:B7、D【解析】細查題意,把代入橢圓方程,得,整理得出,設出點的坐標,由根與系數的關系可以推出線段的中點坐標,再由過原點與線段的中點的直線的斜率為,進而可推導出的值.【詳解】聯立橢圓方程與直線方程,可得,整理得,設,則,從而線段的中點的橫坐標為,縱坐標,因為過原點與線段中點的直線的斜率為,所以,所以,故選D.【點睛】該題是一道關于直線與橢圓的綜合性題目,涉及到的知識點有直線與橢圓相交時對應的解題策略,中點坐標公式,斜率坐標公式,屬于簡單題目.8、A【解析】建立空間直角坐標系,用空間向量求解異面直線夾角的余弦值.【詳解】如圖,以D為坐標原點,DA所在直線為x軸,DC所在直線為y軸,所在直線為z軸建立空間直角坐標系,設正方體棱長為2,則,,,,則,,設異面直線與所成角為(),則.故選:A9、B【解析】設圓柱的底面半徑為,則圓柱底,圓柱側,則可得,則圓柱的體積為,利用導數求出最大值,確定值.【詳解】設圓柱的底面半徑為,則圓柱底,圓柱側,∴,∴,則圓柱的體積,∴,由得,由得,∴當時,取極大值,也是最大值,即故選:B【點睛】本題主要考查了圓柱表面積和體積的計算,考查了導數的實際應用,考查了學生的應用意識.10、C【解析】由可得,或,再由方程判斷所表示的曲線.【詳解】由可得,或,即或,則該方程表示一個橢圓的一部分和一條直線.故選:C11、D【解析】設等比數列的公比為,由已知列式求得,再由等比數列的通項公式與前項和求解.【詳解】設等比數列的公比為,由,得,所以,又,所以,所以,,所以即故選:D12、C【解析】依據橢圓和雙曲線定義和題給條件列方程組,得到關于橢圓的離心率和雙曲線的離心率的關系式,即可求得的值.【詳解】設橢圓的長軸長為,雙曲線的實軸長為,令,不妨設則,解之得代入,可得整理得,即,也就是故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作出該不等式表示的平面區域,由的幾何意義結合距離公式得出答案.【詳解】該不等式組表示的平面區域,如下圖所示過點作直線的垂線,垂足為因為表示原點與可行域中點之間的距離,所以的最小值為.故答案為:14、①②.【解析】由題設可得,應用累加法求的通項公式,由基本不等式及確定的最小值,再應用裂項求和法求的前20和.【詳解】由題設,,∴,…,,又,∴將上式累加可得:,則,∴,當且僅當時等號成立,又,故最小,則或5,當時,;當時,;∴的最小值為.由上知:,∴前20項和為.故答案為:8,.15、4【解析】設平面,在平面內作于點O,在平面內過點O作,設OM是的角平分線,過棱m上一點P作,則過點O在平面OMQP上存在2條直線l,使得直線l與OB、OA成,直線l與平面且與平面,所成的角都是30°,在的補角一側也存在2條滿足條件的直線l,由此可得答案.【詳解】解:設平面,在平面內作于點O,在平面內過點O作,因為平面,所以,設OM是的角平分線,則,過棱m上一點P作,則過點O在平面OMQP上存在2條直線l,使得直線l與OB、OA成,此時直線l與平面且與平面,所成的角都是30°,同理,在的補角一側也存在2條滿足條件的直線l,所以這樣的直線l有4條,故答案為:4.16、【解析】根據求解即可.【詳解】,故答案為:【點睛】本題主要考查了求空間中兩個向量的夾角,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)解一元二次不等式,即可求得當為真命題時的取值范圍;(2)先求得命題為真命題時的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當為真命題時,解不等式可得;(2)當為真命題時,由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點睛】本題考查了根據命題真假求參數的取值范圍,由復合命題真假判斷命題真假,并求參數的取值范圍,屬于基礎題.18、(1)函數f(x)在區間(0,+)上單調遞減(2)①;②證明見解析【解析】(1)求導,求解可得導函數恒小于等于0,即得證;(2)①分析函數的單調性,由有兩個實數根可求解;②由(1)得2lnxx?,再利用其放縮可得,由此有,問題得證.【小問1詳解】當a=1時,函數因為所以函數f(x)在區間(0,+)上單調遞減;【小問2詳解】(i)由已知可得方程有兩個實數根記,則.當時,,函數k(x)是增函數;當時,,函數k(x)是減函數,所以,故(ii)易知,當x1時,,故.由(1)可知,當0x1時,,所以2lnxx?由,得,所以因為,所以19、(1);(2)證明見解析,(-5,0).【解析】(1)寫出A、B、F的坐標,求出向量坐標,根據向量的關系即可列出方程組,求得a、b、c和橢圓的標準方程;(2)設直線l的方程為y=kx+m,,.聯立直線l與橢圓方程,根據韋達定理得到根與系數的關系,求出,根據即可求得k和m的關系,即可證明直線過定點并求出該定點.【小問1詳解】由題意,知A(-a,0),B(a,0),F(c,0)∵,∴解得從而b2=a2-c2=3∴橢圓C的方程;【小問2詳解】設直線l的方程為y=kx+m,,∵直線l不過點A,因此-2k+m≠0由得時,,,∴由,可得3k=m-2k,即m=5k,故l的方程為y=kx+5k,恒過定點(-5,0).20、(1)見解析;(2).【解析】分析:依題意可知兩兩垂直,以點為原點建立空間直角坐標系,(1)利用直線的方向向量和平面的法向量垂直,即可證得線面平面;(2)求出兩個平面的法向量,利用兩個向量的夾角公式,即可求解二面角的余弦值.詳解:依條件可知、、兩兩垂直,如圖,以點為原點建立空間直角坐標系.根據條件容易求出如下各點坐標:,,,,,,,.(Ⅰ)證明:∵,,是平面的一個法向量,且,所以.又∵平面,∴平面;(Ⅱ)設是平面的法向量,因為,,由,得.解得平面的一個法向量,由已知,平面的一個法向量為,,∴二面角的余弦值是.點睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,通過嚴密推理,明確角的構成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.21、(1)或(2)【解析】(1)利用等差數列通項公式,可構造方程組求得,由此可得通項公式;(2)由(1)可得,利用分組求和法,結合等差等比求和公式可得結果.【小問1詳解】設等差數列的公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論