




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省蕪湖市普通高中2023-2024學年高二數學第一學期期末經典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點是橢圓上的任意點,是橢圓的左焦點,是的中點,則的周長為()A. B.C. D.2.南北朝時期杰出的數學家祖沖之的兒子祖暅在數學上也有很多創造,其最著名的成就是祖暅原理:夾在兩個平行平面之間的幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,現有一個圓柱體和一個長方體,它們的底面面積相等,高也相等,若長方體的底面周長為,圓柱體的體積為,根據祖暅原理,可推斷圓柱體的高()A.有最小值 B.有最大值C.有最小值 D.有最大值3.函數的最小值為()A. B.1C.2 D.e4.已知,是雙曲線的左,右焦點,經過點且與x軸垂直的直線與雙曲線的一條漸近線相交于點A,且A在第三象限,四邊形為平行四邊形,為直線的傾斜角,若,則該雙曲線離心率的取值范圍是()A. B.C. D.5.如圖,棱長為1的正方體中,為線段上的動點,則下列結論錯誤的是A.B.平面平面C.的最大值為D.的最小值為6.已知直線,,若,則實數的值是()A.0 B.2或-1C.0或-3 D.-37.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.8.已知橢圓=1(a>b>0)的右焦點為F,橢圓上的A,B兩點關于原點對稱,|FA|=2|FB|,且·≤a2,則該橢圓離心率的取值范圍是()A.(0,] B.(0,]C.,1) D.,1)9.已知圓的方程為,直線:恒過定點,若一條光線從點射出,經直線上一點反射后到達圓上的一點,則的最小值是()A.3 B.4C.5 D.610.已知向量,則()A.5 B.6C.7 D.811.已知定義在區間上的函數,,若以上兩函數的圖像有公共點,且在公共點處切線相同,則m的值為()A.2 B.5C.1 D.012.窗花是貼在窗紙或窗戶玻璃上的剪紙,是古老的傳統民間藝術之一.如圖是一個窗花的圖案,以正六邊形各頂點為圓心、邊長為半徑作圓,陰影部分為其公共部分.現從該正六邊形中任取一點,則此點取自于陰影部分的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某個年級有男生560人,女生420人,用分層抽樣的方法從該年級全體學生中抽取一個容量為280的樣本,則此樣本中男生人數為____________.14.已知O為坐標原點,橢圓T:,過橢圓上一點P的兩條直線PA,PB分別與橢圓交于A,B,設PA,PB的中點分別為D,E,直線PA,PB的斜率分別是,,若直線OD,OE的斜率之和為2,則的最大值為_______15.若函數在(0,+∞)內有且只有一個零點,則a的值為_____16.已知拋物線的焦點坐標為,則該拋物線上一點到焦點的距離的取值范圍是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的上、下頂點分別為A,B,離心率為,橢圓C上的點與其右焦點F的最短距離為.(1)求橢圓C的標準方程;(2)若直線與橢圓C交于P,Q兩點,直線PA與QB的斜率分別為,,且,那么直線l是否過定點,若過定點,求出該定點坐標;否則,請說明理由.18.(12分)已知橢圓C:過兩點(1)求C的方程;(2)定點M坐標為,過C右焦點的直線與C交于P,Q兩點,判斷是否為定值?若是,求出該定值,若不是,請說明理由19.(12分)在平面直角坐標系內,橢圓E:過點,離心率為(1)求E的方程;(2)設直線(k∈R)與橢圓E交于A,B兩點,在y軸上是否存在定點M,使得對任意實數k,直線AM,BM的斜率乘積為定值?若存在,求出點M的坐標;若不存在,說明理由20.(12分)如圖①,直角梯形中,,,點,分別在,上,,,將四邊形沿折起,使得點,分別到達點,的位置,如圖②,平面平面,.(1)求證:平面平面;(2)求二面角的余弦值.21.(12分)已知橢圓的左、右焦點分別為、,離心率,且過點(1)求橢圓C的方程;(2)已知過的直線l交橢圓C于A、B兩點,試探究在平面內是否存在定點Q,使得是一個確定的常數?若存在,求出點Q的坐標;若不存在,說明理由22.(10分)若分別是橢圓的左、右焦點,是該橢圓上的一個動點,且(1)求橢圓的方程(2)是否存在過定點的直線與橢圓交于不同的兩點,使(其中為坐標原點)?若存在,求出直線的斜率;若不存在,說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設橢圓另一個焦點為,連接,利用中位線的性質結合橢圓的定義可求得結果.【詳解】在橢圓中,,,,如圖,設橢圓的另一個焦點為,連接,因為、分別為、的中點,則,則的周長為,故選:A.2、C【解析】由條件可得長方體的體積為,設長方體的底面相鄰兩邊分別為,根據基本不等式,可求出底面面積的最大值,進而求出高的最小值,得出結論.【詳解】依題意長方體的體積為,設圓柱的高為長方體的底面相鄰兩邊分別為,,當且僅當時,等號成立,.故選:C.【點睛】本題以數學文化為背景,考查基本不等式求最值,要認真審題,理解題意,屬于基礎題.3、B【解析】先化簡為,然后通過換元,再研究外層函數單調性,進而求得的最小值【詳解】化簡可得:令,故的最小值即為的最小值,是關于的單調遞增函數,易知對求導可得:當時,單調遞減;當時,單調遞增則有:故選:B4、B【解析】根據雙曲線的幾何性質和平行四邊形的性質可知也在雙曲線的漸近線上,且在第一象限,從而由可知軸,所以在直角三角形中,,由,可得的范圍,進而轉化為,的不等式,結合可得離心率的取值范圍【詳解】解:因為經過點且與軸垂直的直線與雙曲線的一條漸近線相交于點,且在第三象限,四邊形為平行四邊形,所以由雙曲線的對稱性可知也在雙曲線的漸近線上,且在第一象限,由軸,可知軸,所以,在直角三角形中,,因為,所以,,即,所以,即,即,故,所以.故選:B5、C【解析】∵,,∴面,面,∴,A正確;∵平面即為平面,平面即為平面,且平面,∴平面平面,∴平面平面,∴B正確;當時,為鈍角,∴C錯;將面與面沿展成平面圖形,線段即為的最小值,在中,,利用余弦定理解三角形得,即,∴D正確,故選C考點:立體幾何中的動態問題【思路點睛】立體幾何問題的求解策略是通過降維,轉化為平面幾何問題,具體方法表現為:
求空間角、距離,歸到三角形中求解;2.對于球的內接外切問題,作適當的截面,既要能反映出位置關系,又要反映出數量關系;求曲面上兩點之間的最短距離,通過化曲為直轉化為同一平面上兩點間的距離6、C【解析】由,結合兩直線一般式有列方程求解即可.【詳解】由知:,解得:或故選:C.7、B【解析】利用空間向量加減、數乘的幾何意義,結合三棱錐用表示出即可.【詳解】由題設,,,,.故選:B8、B【解析】如圖設橢圓的左焦點為E,根據題意和橢圓的定義可知,利用余弦定理求出,結合平面向量的數量積計算即可.【詳解】由題意知,如圖,設橢圓的左焦點為E,則,因為點A、B關于原點對稱,所以四邊形為平行四邊形,由,得,,在中,,所以,由,得,整理,得,又,所以.故選:B9、B【解析】求得定點,然后得到關于直線對稱點為,然后可得,計算即可.【詳解】直線可化為,令解得所以點的坐標為.設點關于直線的對稱點為,則由,解得,所以點坐標為.由線段垂直平分線的性質可知,,所以(當且僅當,,,四點共線時等號成立),所以的最小值為4.故選:B.10、A【解析】利用空間向量的模公式求解.【詳解】因向量,所以,故選:A11、C【解析】設兩曲線與公共點為,分別求得函數的導數,根據兩函數的圖像有公共點,且在公共點處切線相同,列出等式,求得公共點的坐標,代入函數,即可求解.【詳解】根據題意,設兩曲線與公共點為,其中,由,可得,則切線的斜率為,由,可得,則切線斜率為,因為兩函數的圖像有公共點,且在公共點處切線相同,所以,解得或(舍去),又由,即公共點的坐標為,將點代入,可得.故選:C.12、D【解析】求得陰影部分的面積,結合幾何概型概率計算公式,計算出所求的概率.【詳解】設正六邊形的邊長為,則其面積為.陰影部分面積為,故所求概率為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、160【解析】∵某個年級共有980人,要從中抽取280人,∴抽取比例為,∴此樣本中男生人數為,故答案為160.考點:本題考查了分層抽樣的應用點評:掌握分層抽樣的概念是解決此類問題的關鍵,屬基礎題14、【解析】設的坐標,用點差法求和與的關系同,與的關系,然后表示出,求得最大值【詳解】設,,,則,兩式相減得,∴,,則,同理,,又,∴,,當且僅當,即時等號成立,∴,故答案為:【點睛】方法點睛:本題考查直線與橢圓相交問題,考查橢圓弦中點問題.橢圓中涉及到弦的中點時,常常用點差法確定關系,即設弦端點為,弦中點為,把兩點坐標代入橢圓方程,相減后可得15、a=3【解析】對函數進行求導,分類討論函數單調性,根據單調性結合已知可以求出a的值.【詳解】∵函數在(0,+∞)內有且只有一個零點,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①當a≤0時,f′(x)=2x(3x﹣a)>0,函數f(x)在(0,+∞)上單調遞增,f(0)=1,f(x)在(0,+∞)上沒有零點,舍去;②當a>0時,f′(x)=2x(3x﹣a)>0的解為x,∴f(x)在(0,)上遞減,在(,+∞)遞增,又f(x)只有一個零點,∴f()1=0,解得a=3故答案為:a=3【點睛】本題考查了利用導數研究已知函數的零點求參數取值問題,考查了分類討論和數學運算能力.16、【解析】根據題意,求得,得到焦點坐標,結合拋物線的定義,得到,根據,求得,即可求解.【詳解】由拋物線的焦點坐標為,可得,解得,設拋物線上的任意一點為,焦點為,由拋物線的定義可得,因為,所以,所以拋物線上一點到焦點的距離的取值范圍是.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)恒過點【解析】(1)設為橢圓上的點,根據橢圓的性質得到,再根據的取值范圍,得到,再根據離心率求出、,最后根據,求出,即可得解;(2)設、,表示出、,聯立直線與橢圓方程,消元列出韋達定理,由,即可得到,再根據,即可得到,從而得到,再將、代入計算可得;【小問1詳解】解:設為橢圓上的點,為橢圓的右焦點,所以,因為,所以,又,所以、,因為,所以,所以橢圓方程為;【小問2詳解】解:設、,依題意可得、,所以、,聯立得,則即,所以、,因為,所以,即,由得,即,所以,即,,整理得,所以,即,即,解得或,當時直線過點,故舍去,所以,則直線恒過點;18、(1);(2)為定值.【解析】(1)根據題意,列出的方程組,求解即可;(2)對直線的斜率是否存在進行討論,當直線斜率存在時,設出直線的方程,聯立橢圓方程,利用韋達定理,轉化,求解即可.【小問1詳解】因為橢圓過兩點,故可得,解得,故橢圓方程為:.【小問2詳解】由(1)可得:,故橢圓的右焦點的坐標為;當直線的斜率不存在時,此時直線的方程為:,代入橢圓方程,可得,不妨取,又,故.當直線的斜率存在時,設直線的方程為:,聯立橢圓方程,可得:,設坐標為,故可得,則.綜上所述,為定值.【點睛】本題考察橢圓方程的求解,以及橢圓中的定值問題;處理問題的關鍵是合理的利用韋達定理,將目標式進行轉化,屬中檔題.19、(1)(2)存在,或者【解析】(1)由離心率和橢圓經過的點列出方程組,求出,得到橢圓方程;(2)假設存在,設出直線,聯立橢圓,利用韋達定理得到兩根之和,兩根之積,結合斜率乘積為定值得到關于的方程,求出答案.【小問1詳解】由題可得,,①由,得,即,則,②將②代入①,解得,,故E的方程為【小問2詳解】設存在點滿足條件記,由消去y,得.顯然,判別式>0,所以,,于是===上式為定值,當且僅當,解得或此時,或所以,存在定點或者滿足條件20、(1)證明見解析(2)【解析】(1)根據,,,,易證,再根據平面平面,,得到平面,進而得到,再利用線面垂直的判定定理證明平面即可;(2)根據(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向建立空間直角坐標系,分別求得平面的一個法向量和平面的一個法向量,設二面角的大小為,由求解.【小問1詳解】解:因為,,,所以,,又,所以是等腰直角三角形,即,所以.由平面幾何知識易知,所以,即.又平面平面,平面平面,,所以平面,又平面,所以.又,所以平面,又平面,所以平面平面.【小問2詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年臺州市中醫院招聘真題
- 2025年二手奢侈品市場鑒定標準與交易規范發展前景預測報告
- 2025年二手電商信用評價體系中的道德風險與治理報告
- 人工智能在藝術創作中的應用行業跨境出海項目商業計劃書
- DB1303T 161-2011 農業企業標準體系通則
- 單詞問答比賽題目及答案
- 大圣輪回科舉題目及答案
- 三類人員考試試題及答案b類
- 河南高壓電工證考試試題及答案
- 【宿州】2025年安徽省宿州市碭山縣縣直事業單位公開招聘工作人員19人筆試歷年典型考題及考點剖析附帶答案詳解
- 數智賦能下的課程改革策略與實施路徑
- 2025年音樂節演唱會明星藝人歌手樂隊演出場費價格表
- 職業教育試題庫及答案
- 數據庫云服務市場分析-深度研究
- 2025年酒吧經理考試題及答案
- 《信息安全技術基礎》課件 4.2Linux操作系統安全加固
- 《球閥結構分析》課件
- 浙江首考2025年1月普通高等學校招生全國統考化學試題及答案
- 富士康公司組織架構及部門職責
- 2024年股權轉讓合作備忘錄
- 《常懷敬畏之心》課件
評論
0/150
提交評論