




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆西藏省重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若直線與圓相交于、兩點(diǎn),且(其中為原點(diǎn)),則的值為()A. B.C. D.2.已知拋物線的焦點(diǎn)為F,過點(diǎn)F作傾斜角為的直線l與拋物線交于兩點(diǎn),則POQ(O為坐標(biāo)原點(diǎn))的面積S等于()A. B.C. D.3.已知分別是雙曲線的左、右焦點(diǎn),動點(diǎn)P在雙曲線的左支上,點(diǎn)Q為圓上一動點(diǎn),則的最小值為()A.6 B.7C. D.54.已知橢圓的一個焦點(diǎn)坐標(biāo)是,則()A.5 B.2C.1 D.5.已知,,且,則()A. B.C. D.6.一輛汽車做直線運(yùn)動,位移與時間的關(guān)系為,若汽車在時的瞬時速度為12,則()A. B.C.2 D.37.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個交點(diǎn),若,則()A. B.3C. D.28.設(shè),直線,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.從編號為1~120的商品中利用系統(tǒng)抽樣的方法抽8件進(jìn)行質(zhì)檢,若所抽樣本中含有編號66的商品,則下列編號一定被抽到的是()A.111 B.52C.37 D.810.正數(shù)a,b滿足,若不等式對任意實(shí)數(shù)x恒成立,則實(shí)數(shù)m的取值范圍是A. B.C. D.11.橢圓的()A.焦點(diǎn)在x軸上,長軸長為2 B.焦點(diǎn)在y軸上,長軸長為2C.焦點(diǎn)在x軸上,長軸長為 D.焦點(diǎn)在y軸上,長軸長為12.已知函數(shù)的值域?yàn)椋瑒t實(shí)數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,將若干個點(diǎn)擺成三角形圖案,每條邊(包括兩個端點(diǎn))有個點(diǎn),相應(yīng)的圖案中點(diǎn)的個數(shù)記為,按此規(guī)律,則___________,___________.14.如圖,SD是球O的直徑,A、B、C是球O表面上的三個不同的點(diǎn),,當(dāng)三棱錐的底面是邊長為3的正三角形時,則球O的半徑為______.15.?dāng)?shù)列的前項(xiàng)和為,則_________________.16.已知、均為正實(shí)數(shù),且,則的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交直線于點(diǎn),點(diǎn)的軌跡記為曲線.(1)求曲線的方程;(2)已知曲線上一點(diǎn),動圓,且點(diǎn)在圓外,過點(diǎn)作圓的兩條切線分別交曲線于點(diǎn),.(i)求證:直線的斜率為定值;(ii)若直線與交于點(diǎn),且時,求直線的方程.18.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點(diǎn)B到平面PCD的距離;(2)求二面角的平面角的余弦值.19.(12分)已知離心率為的橢圓經(jīng)過點(diǎn).(1)求橢圓的方程;(2)若不過點(diǎn)的直線交橢圓于兩點(diǎn),求面積的最大值.20.(12分)已知橢圓C:(a>b>0)的離心率e為,點(diǎn)在橢圓上(1)求橢圓C的方程;(2)若A、B為橢圓的左右頂點(diǎn),過點(diǎn)(1,0)的直線交橢圓于M、N兩點(diǎn),設(shè)直線AM、BN的斜率分別為,求證為定值21.(12分)在二項(xiàng)式的展開式中,______.給出下列條件:①若展開式前三項(xiàng)的二項(xiàng)式系數(shù)的和等于46;②所有奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和為256.試在上面兩個條件中選擇一個補(bǔ)充在上面的橫線上,并解答下列問題:(1)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);(2)求展開式的常數(shù)項(xiàng).22.(10分)等比數(shù)列中,,(1)求的通項(xiàng)公式;(2)記為的前n項(xiàng)和.若,求m的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】分析出為等腰直角三角形,可得出原點(diǎn)到直線的距離,利用點(diǎn)到直線的距離公式可得出關(guān)于的等式,由此可解得的值.【詳解】圓的圓心為原點(diǎn),由于且,所以,為等腰直角三角形,且圓心到直線的距離為,由點(diǎn)到直線的距離公式可得,解得.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查利用圓周角求參數(shù),解題的關(guān)鍵在于求出弦心距,再利用點(diǎn)到直線的距離公式列方程求解參數(shù).2、A【解析】由拋物線的方程可得焦點(diǎn)的坐標(biāo),由題意設(shè)直線的方程,與拋物線的方程,聯(lián)立求出兩根之和及兩根之積,進(jìn)而求出,的縱坐標(biāo)之差的絕對值,代入三角形的面積公式求出面積【詳解】拋物線的焦點(diǎn)為,,由題意可得直線的方程為,設(shè),,,,聯(lián)立,整理可得:,則,,所以,所以,故選:A3、A【解析】由雙曲線的定義及三角形的幾何性質(zhì)可求解.【詳解】如圖,圓的圓心為,半徑為1,,,當(dāng),,三點(diǎn)共線時,最小,最小值為,而,所以故選:A4、C【解析】根據(jù)題意橢圓焦點(diǎn)在軸上,且,將橢圓方程化為標(biāo)準(zhǔn)形式,從而得出,得出答案.【詳解】由焦點(diǎn)坐標(biāo)是,則橢圓焦點(diǎn)在軸上,且將橢圓化為,則由,焦點(diǎn)坐標(biāo)是,則,解得故選:C5、D【解析】利用空間向量共線的坐標(biāo)表示可求得、的值,即可得解.【詳解】因?yàn)椋瑒t,所以,,,因此,.故選:D6、D【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可解得;【詳解】解:因?yàn)椋杂制囋跁r的瞬時速度為12,即即,解得故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)在物理中的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設(shè)與軸交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.8、A【解析】由可求得實(shí)數(shù)的值,再利用充分條件、必要條件的定義判斷可得出結(jié)論.【詳解】若,則,解得或,因此,“”是“”的充分不必要條件.故選:A.9、A【解析】先求出等距抽樣的組距,從而得到被抽到的是,從而求出答案.【詳解】120件商品中抽8件,故,因?yàn)楹芯幪?6的商品被抽到,故其他能被抽到的是,當(dāng)時,,其他三個選項(xiàng)均不合要求,故選:A10、A【解析】利用基本不等式求得的最小值,把問題轉(zhuǎn)化為恒成立的類型,求解的最大值即可.【詳解】,,且a,b為正數(shù),,當(dāng)且僅當(dāng),即時,,若不等式對任意實(shí)數(shù)x恒成立,則對任意實(shí)數(shù)x恒成立,即對任意實(shí)數(shù)x恒成立,,,故選:A【點(diǎn)睛】本題主要考查了恒成立問題,基本不等式求最值,二次函數(shù)求最值,屬于中檔題.11、B【解析】把橢圓方程化為標(biāo)準(zhǔn)方程可判斷焦點(diǎn)位置和求出長軸長.【詳解】橢圓化為標(biāo)準(zhǔn)方程為,所以,且,所以橢圓焦點(diǎn)在軸上,,長軸長為.故選:B.12、D【解析】求出函數(shù)在時值的集合,函數(shù)在時值的集合,再由已知并借助集合包含關(guān)系即可作答.【詳解】當(dāng)時,在上單調(diào)遞增,,,則在上值的集合是,當(dāng)時,,,當(dāng)時,,當(dāng)時,,即在上單調(diào)遞減,在上單調(diào)遞增,,,則在上值的集合為,因函數(shù)的值域?yàn)椋谑堑茫瑒t,解得,所以實(shí)數(shù)的取值范圍是.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】利用題中所給規(guī)律求出即可.【詳解】解:由圖可知,,,,,因?yàn)榉系炔顢?shù)列的定義且公差為所以,所以,故答案為:,.14、【解析】由三棱錐是正三棱錐,利用正弦定理得出三角形外接圓的半徑,進(jìn)而求出,再由余弦定理得出球O的半徑.【詳解】因?yàn)椋云矫妫忮F是正三棱錐,設(shè)為三角形外接圓的圓心,則在上,連接,,由得出,所以,在中,,即,解得,則球O的半徑為.故答案為:15、【解析】利用計算可得出數(shù)列的通項(xiàng)公式.【詳解】當(dāng)時,;而不適合上式,.故答案:.16、【解析】由基本不等式可得出關(guān)于的不等式,即可解得的最小值.【詳解】因、均為正實(shí)數(shù),由基本不等式可得,整理可得,,,則,解得,當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立,故的最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(i)答案見解析(ii)或【解析】(1)通過幾何關(guān)系可知,且,由此可知點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn),且實(shí)軸長為的雙曲線,通過雙曲線的定義即可求解;(2)(i)設(shè)點(diǎn),,直線的方程為,將直線方程與雙曲線方程聯(lián)立利用韋達(dá)定理及求出,即得到直線的斜率為定值;(ii)由(i)可知,由已知可得,聯(lián)立方程即可求出,的值,代入即可求出的值,即可得到直線方程.【小問1詳解】由題意可知,∵,且,∴根據(jù)雙曲線的定義可知,點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn),且實(shí)軸長為的雙曲線,即,,,則點(diǎn)的軌跡方程為;【小問2詳解】(i)設(shè)點(diǎn),,直線的方程為,聯(lián)立得,其中,且,,,∵曲線上一點(diǎn),∴,由已知條件得直線和直線關(guān)于對稱,則,即,整理得,,,,即,則或,當(dāng),直線方程為,此直線過定點(diǎn),應(yīng)舍去,故直線的斜率為定值.(ii)由(i)可知,由已知得,即,當(dāng)時,,,即,,,解得或,但是當(dāng)時,,故應(yīng)舍去,當(dāng)時,直線方程為,當(dāng)時,,即,,,解得(舍去)或,當(dāng)時,直線方程為,故直線的方程為或.18、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,用點(diǎn)到面的距離公式即可算出答案;(2)先求出兩個面的法向量,然后用二面角公式即可.【小問1詳解】∵平面平面∴PB⊥AB,PB⊥BC,又兩兩互相垂直,所以,以點(diǎn)為坐標(biāo)原點(diǎn),分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,D(3,6,0),A(0,6,0)設(shè)平面的一個法向量所以n?PD令,可得記點(diǎn)到平面的距離為,則d=【小問2詳解】由(1)可知平面的一個法向量為平面的一個法向量為設(shè)二面角的平面角為由圖可知,19、(1);(2).【解析】(1)根據(jù),可設(shè),,求出,得到橢圓的方程,代入點(diǎn)的坐標(biāo),求出,即可得出結(jié)果.(2)設(shè)出點(diǎn),的坐標(biāo),直線與橢圓方程聯(lián)立,利用韋達(dá)定理求出弦長,由點(diǎn)到直線的距離公式,三角形的面積公式及基本不等式可得結(jié)論.【詳解】(1)因?yàn)椋栽O(shè),,則,橢圓的方程為.代入點(diǎn)的坐標(biāo)得,,所以橢圓的方程為.(2)設(shè)點(diǎn),的坐標(biāo)分別為,,由,得,即,,,,.,點(diǎn)到直線的距離,的面積,當(dāng)且僅當(dāng),即時等號成立.所以當(dāng)時,面積的最大值為.【點(diǎn)睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程和性質(zhì),直線與橢圓相交問題.屬于中檔題.20、(1);(2)證明見解析【解析】(1)根據(jù)題意列出關(guān)于a、b、c的方程組求出a、b、c即可得橢圓方程;(2)設(shè)直線的方程為,,,,,聯(lián)立直線方程利用韋達(dá)定理即可求為定值【小問1詳解】;【小問2詳解】由橢圓方程可知,,,設(shè)直線的方程為,,,,,聯(lián)立得,∴,,則,∵,,∴,把及代入可得:﹒21、(1),;(2).【解析】選擇①:,利用組合數(shù)公式,計算即可;選擇②:轉(zhuǎn)化為,計算即可(1)由于共9項(xiàng),根據(jù)二項(xiàng)式系數(shù)性質(zhì),二項(xiàng)式系數(shù)最大的項(xiàng)為第5項(xiàng)和第6項(xiàng),利用通項(xiàng)公式計算即可;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療技術(shù)進(jìn)步下的護(hù)理人才培養(yǎng)新方向
- 宿遷澤達(dá)職業(yè)技術(shù)學(xué)院《中國文化要略(英)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東圣翰財貿(mào)職業(yè)學(xué)院《經(jīng)濟(jì)社會系統(tǒng)仿真實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧大學(xué)《換熱器設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 遵義醫(yī)科大學(xué)《馬克思主義哲學(xué)原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼河石油職業(yè)技術(shù)學(xué)院《策劃學(xué)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年度浙江省三支一扶之三支一扶行測通關(guān)題庫(附答案)
- 教育技術(shù)下的學(xué)生心理發(fā)展研究
- 教育政策在實(shí)現(xiàn)教育資源均衡中的角色
- 山東城市服務(wù)職業(yè)學(xué)院《中國現(xiàn)當(dāng)代文學(xué)性別文化專題研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 校長在2025暑假前期末教師大會上的講話:靜水深流腳踏實(shí)地
- (2025)全國“安全生產(chǎn)月活動”《安全知識》競賽試題庫(附含答案)
- (2025)黨校入黨積極分子培訓(xùn)結(jié)業(yè)考試題庫與答案
- 2025時政試題及答案(100題)
- 2024秋期國家開放大學(xué)本科《經(jīng)濟(jì)學(xué)(本)》一平臺在線形考(形考任務(wù)1至6)試題及答案
- k受體激動劑在臨床中的應(yīng)用
- 第四節(jié)-酸堿平衡失常的診治課件
- 在挫折中成長(課堂PPT)
- 國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)登記卡高中樣表
- 通用焊接工藝規(guī)范
- 清創(chuàng)縫合術(shù)(課堂PPT)
評論
0/150
提交評論