




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆試題山西省懷仁市重點中學高二數學第一學期期末經典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.春秋時期孔子及其弟子所著的《論語·顏淵》中有句話:“非禮勿視,非禮勿聽,非禮勿言,非禮勿動.”意思是:不符合禮的不看,不符合禮的不聽,不符合禮的不說,不符合禮的不做.“非禮勿聽”可以理解為:如果不合禮,那么就不聽.從數學角度來說,“合禮”是“聽”的()A.充分條件 B.必要條件C.充要條件 D.既不充分也不必要條件2.已知集合,集合或,是實數集,則()A. B.C. D.3.已知橢圓上一點到橢圓一個焦點的距離是,則點到另一個焦點的距離為()A.2 B.3C.4 D.54.下列命題中正確的是()A.若為真命題,則為真命題B.在中“”是“”的充分必要條件C.命題“若,則或”的逆否命題是“若或,則”D.命題,使得,則,使得5.函數的圖象大致是()A. B.C. D.6.下列說法錯誤的是()A.命題“,”的否定是“,”B.若“”是“或”的充分不必要條件,則實數m的最大值為2021C.“”是“函數在內有零點”的必要不充分條件D.已知,且,則的最小值為97.函數在的圖象大致為()A. B.C D.8.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3C. D.29.直線的傾斜角為()A.-30° B.60°C.150° D.120°10.橢圓C:的焦點在x軸上,其離心率為則橢圓C的長軸長為()A.2 B.C.4 D.811.若直線的方向向量為,平面的法向量為,則()A. B.C. D.與相交但不垂直12.某制藥廠為了檢驗某種疫苗預防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設:“這種疫苗不能起到預防的作用”,利用列聯表計算得,經查對臨界值表知.則下列結論中,正確的結論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預防的有效率為C.在犯錯誤的概率不超過的前提下認為“這種疫苗能起到預防的作用”D.有的把握認為這種疫苗不能起到預防生病的作用二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點與的右焦點重合,則__________.14.已知球的表面積是,則該球的體積為________.15.設為等差數列的前n項和,若,,則______16.已知數列是等差數列,若,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面ABCD,,,且,,.(1)求證:平面PAC;(2)已知點M是線段PD上的一點,且,當三棱錐的體積為1時,求實數的值.18.(12分)如圖,四棱錐的底面是正方形,平面平面,E為的中點(1)若,證明:;(2)求直線與平面所成角的余弦值的取值范圍19.(12分)已知數列的前項和為,且.數列是等比數列,,(1)求,的通項公式;(2)求數列的前項和20.(12分)已知空間中三點,,,設,(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實數的值21.(12分)已知橢圓C:經過點,且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點,都有.若存在,求出r的值,并求此時△AOB的面積S的取值范圍;若不存在,請說明理由22.(10分)某校高二年級共有男生490人和女生510人,現采用分層隨機抽樣的方法從該校高二年級中抽取100名學生,測得他們的身高數據(1)男生和女生應各抽取多少人?(2)若樣本中男生和女生的平均身高分別為173.6、162.2厘米,請估計該校高二年級學生的平均身高
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】如果不合禮,那么就不聽.轉化為它的逆否命題.即可判斷出答案.【詳解】如果不合禮,那么就不聽的逆否命題為:如果聽,那么就合理.故“合禮”是“聽”的必要條件.故選:B.2、A【解析】先化簡集合,再由集合的交集、補集運算求解即可【詳解】,或,故故選:A3、C【解析】根據橢圓的定義,結合題意,即可求得結果.【詳解】設橢圓的兩個焦點分別為,故可得,又到橢圓一個焦點的距離是,故點到另一個焦點的距離為.故選:.4、B【解析】A選項,當一真一假時也滿足條件,但不滿足為真命題;B選項,可以使用正弦定理和大邊對大角,大角對大邊進行證明;C選項,利用逆否命題的定義進行判斷,D選項,特稱命題的否定,把存在改為任意,把結論否定,故可判斷D選項.【詳解】若為真命題,則可能均為真,或一真一假,則可能為真命題,也可能為假命題,故A錯誤;在中,由正弦定理得:,若,則,從而,同理,若,則由正弦定理得,,所以,故在中“”是“”的充分必要條件,B正確;命題“若,則或”的逆否命題是“若且,則”,故C錯誤;命題,使得,則,使得,故D錯誤.故選:B5、A【解析】根據函數的定義域及零點的情況即可得到答案.【詳解】函數的定義域為,則排除選項、,當時,,則在上單調遞減,且,,由零點存在定理可知在上存在一個零點,則排除,故選:.6、C【解析】對于A:用存在量詞否定全稱命題,直接判斷;對于B:根據充分不必要條件直接判斷;對于C:判斷出“”是“函數在內有零點”的充分不必要條件,即可判斷;對于D:利用基本不等式求最值.【詳解】對于A:用存在量詞否定全稱命題,所以命題“,”的否定是“,”.故A正確;對于B:若“”是“或”的充分不必要條件,所以,即實數m的最大值為2021.故B正確;對于C:“函數在內有零點”,則,解得:或,所以“”是“函數在內有零點”的充分不必要條件.故C錯誤;對于D:已知,且,所以(當且僅當,即時取等號)故D正確.故選:C7、D【解析】函數|在[–2,2]上是偶函數,其圖象關于軸對稱,因為,所以排除選項;當時,有一零點,設為,當時,為減函數,當時,為增函數故選:D.8、D【解析】根據拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸交點為.根據拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線定義,考查數形結合的數學思想方法,屬于基礎題.9、C【解析】根據直線斜率即可得傾斜角.【詳解】設直線的傾斜角為由已知得,所以直線的斜率,由于,故選:C.10、C【解析】根據橢圓的離心率,即可求出,進而求出長軸長.【詳解】由橢圓的性質可知,橢圓的離心率為,則,即所以橢圓C的長軸長為故選:C.【點睛】本題主要考查了橢圓的幾何性質,屬于基礎題.11、B【解析】通過判斷直線的方向向量與平面的法向量的關系,可得結論【詳解】因為,,所以,所以∥,因為直線的方向向量為,平面的法向量為,所以,故選:B12、C【解析】根據的值與臨界值的大小關系進行判斷.【詳解】∵,,∴在犯錯誤的概率不超過的前提下認為“這種疫苗能起到預防的作用”,C對,由已知數據不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯,由已知數據不能判斷這種疫苗預防的有效率為,B錯,由已知數據沒有的把握認為這種疫苗不能起到預防生病的作用,D錯,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出拋物線的焦點坐標即為的右焦點可得答案.【詳解】由題意可知:拋物線的焦點坐標為,由題意知表示焦點在軸的橢圓,在橢圓中:,所以,因為,所以.故答案為:.14、【解析】設球的半徑為r,代入表面積公式,可解得,代入體積公式,即可得答案.【詳解】設球的半徑為r,則表面積,解得,所以體積,故答案為:【點睛】本題考查已知球的表面積求體積,關鍵是求出半徑,再進行求解,考查基礎知識掌握程度,屬基礎題.15、36【解析】利用等差數列前n項和的性質進行求解即可.【詳解】因為為等差數列的前n項和,所以也成等差數列,即成等差數列,所以,故答案為:16、8【解析】利用計算可得答案.【詳解】設等差數列的公差為,故答案為:8.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)3【解析】(1)證明出,且,從而證明出線面垂直;(2)先用椎體體積公式求出,利用體積之比得到線段之比,從而得到的值.【小問1詳解】證明:∵平面ABCD,且平面ABCD,∴.又因為,且,∴四邊形ABCD為直角梯形.又因為,,易得,,∴,∴.又因為AC,PA是平面PAC的兩條相交直線,∴平面PAC.【小問2詳解】由(1)知且,∴.又∵平面ABCD,.又∵,∴,∴點M到平面ABC的距離為,∴,∴.18、(1)證明見解析;(2).【解析】(1)取的中點F,連接.先證明,,即證平面,原題即得證;(2)分別取的中點G,H,連接,證明為直線與平面所成的角,設正方形的邊長為1,,在中,,即得解.【小問1詳解】解:取的中點F,連接因為,則為正三角形,所以因為平面平面,則平面因為平面,則.①因為四邊形為正方形,E為的中點,則,所以,從而,所以.②又平面,結合①②知,平面,所以【小問2詳解】解:分別取的中點G,H,則,又,,則,所以四邊形為平行四邊形,從而.因為,則因為平面平面,,則平面,從而,因為平面,所以平面,從而平面連接,則為直線與平面所成的角.設正方形的邊長為1,,則從而,.在中,因為當時,單調遞增,則,所以直線與平面所成角的余弦值的取值范圍是.19、(1),(2)【解析】(1)利用求出通項公式,根據已知求出公比即可得出的通項公式;(2)利用錯位相減法可求解.【小問1詳解】因為數列的前項和為,且,當時,,當時,,滿足,所以,設等比數列的公比為,因為,,所以,解得,所以;【小問2詳解】因為,,則,兩式相減得,所以.20、(1);(2)或.【解析】(1)坐標表示出、,利用向量夾角的坐標表示求夾角余弦值;(2)坐標表示出k+、k-2,利用向量垂直的坐標表示列方程求的值.【詳解】由題設,=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.21、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過點列出方程組,求出,求出橢圓方程;(2)假設存在,分切線斜率存在和不存在分類討論,根據向量數量積為0求出r的值,表達出△AOB的面積,利用基本不等式求出的取值范圍,進而求出△AOB面積的取值范圍.【小問1詳解】因為橢圓C:的離心率,且過點所以解得所以橢圓C的方程為【小問2詳解】假設存在⊙O:滿足題意,①切線方程l的斜率存在時,設切線方程l:y=kx+m與橢圓方程聯立,消去y得,(*)設,,由題意知,(*)有兩解所以,即由根與系數的關系可得,所以因為,所以,即化簡得,且,O到直線l的距離所以,又,此時,所以滿足題意所以存在圓的方程為⊙O:△AOB的面積,又因為當k≠0時當且僅當即時取等號又因為,所以,所以當k=0時,②斜率不存在時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 購買農用車協議合同
- 評估項目居間合同協議
- 起重機買賣租賃合同協議
- 訂制衣柜付款合同協議
- 湖南省邵陽市邵東市第七中學2024-2025學年高一下學期4月期中地理試題(原卷版+解析版)
- 《第03節 探究外力做功與物體動能變化的關系》教學設計
- 樓頂安裝升降機合同協議
- 商場攤位轉讓合同協議
- 品牌代言合同協議
- 和諧協議書范本
- 電機與電氣控制技術課程說課
- 國土空間規劃與自然資源“一張圖”構建的理論方法和實踐
- 國開《Windows網絡操作系統管理》形考任務2-配置本地帳戶與活動目錄域服務實訓
- GA/T 2087-2023法庭科學玻璃破碎痕跡檢驗技術規程
- XX醫院高警示藥品(高危藥品)目錄
- 鎖邊機安全操作規程
- 特種設備日管控、周排查、月調度模板
- 2023學年完整公開課版虎皮鸚鵡
- 10kV電力電纜(銅芯)技術規范書
- 高空作業車專項施工方案全套資料
- 撫順東科精細化工有限公司 15萬噸-年減水劑單體、3萬噸-年表面活性劑系列產品及16萬噸-年碳酸酯 系列產品建設項環境影響報告
評論
0/150
提交評論