


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Monday,September07,2015
ThoughtsonKDD2015
LastmonthIattendedKDD2015inbeautifulSydney,Australia.Forthosewhodon'tknow,KDDisthe internationalconferenceforappliedmachinelearning&datamining,andisoftenthevenueforsomeofthemostinterestingdata ysisresearchprojects.
DespiteconcernsthatKDD2015wouldbealetdownafterKDD2014wassuchagreatsuccessinNewYorkCity,overallKDD2015wasafantasticconference,withanexcellentlineupofinvitedspeakersandplentyofinterestingpapers.CongratulationsalsotomyPhDadvisorThorstenJoachims,whonotonlydidagreatjobasPCCo-Chair,butalsowastherecipientofaTestofTimeAwardforhisworkonOptimizingSearchEnginesusingClickthroughData.
DataScienceforScience
OneofthebiggestthemesatKDD2015wasapplyingdatasciencetosupportthesciences,whichissomethingthat'sbeenonmymindalotrecently.HughDurrant-Whitegaveagreatkeynoteonapplyingmachinelearningtodiscoveryprocessesingeologyandecology.Onethingthatjumpedoutofhistalkwashowchallengingitistodevelopmodelsthatareinterpretableto experts.Thisissueisamelioratedinhissettingsbecausehelargelyfocusedonspatialmodelswhichareeasiertovisualizeandinterpret.
SusanAtheygaveanotherkeynoteontheinterybetweenmachinelearningandcausalinferenceinevaluation,whichisanimportantissueforthesciencesaswell.Imustadmit,mostofthetalkwentovermyhead,buttherewassomeinterestingdebateafterthetalkaboutwhethercausalityshouldbethegoalorratherjustmore"robust"correlations(whateverthatmightmean).
IalsoreallyenjoyedtheData-DrivenSciencePanel,wherethedebategotquiteheatedattimes.Twoissuesinparticularstoodout.First,whatshouldbetheroleofmachinelearninganddataminingexpertsintheecosystemofdata-drivenscience?Onetheonehand,computerscientistshavehistoricallyhadalargeimpactbydevelosystemsandtformsthat awaylow-levelcomplexityandempowerusertobemoreproductive.However,howtoachievesuchasolutioninadata-richworldisamuessier(oratleastdifferent)typeofendeavor.Thereare,ofcourse,plentyofstartupsthataddressaspectsofthisproblem,butagenuinescalablesolutionforscienceremainselusive.
Asecondissuethatwasraisedwaswhethercomputationalresearchershavemademuchofadirectimpactonthesciences.Theparticulararea,raisedbyTinaEliassi-Rad,isthesocialsciences.Machinelearninganddatamininghavetakengreatinterestincomputationalsocialscienceviastudyinglargesocialnetworks.However,itisnotcleartowhatextentcomputationalresearchershavedirectlymadeanimpacttotraditionalsocialsciencefields.Ofcourse,thisissueistiedbacktowhattheroleofcomputationalresearchersshouldbe.Ontheonehand,manysocialscientistsdousetoolsmadebycomputationalpeople,sotheindirectimpactisquiteclear.Doesitreallymatterthattherehasn'tbeenmuchdirectimpact?
UpdateonMOOCs
DaphneKollergaveagreatkeynoteonthestateofMOOCsandCourserainparticular.ItseemsthatMOOCsnowadaysaremuchsmarterabouttheirconsumerbase,andhavediversifiedthewaytheydelivercontentandmeasuresuccessforawiderangeofstudents.Forexample,peoplenowunderstandmuchbetterthedifferentneedsofcollegeaspirants(whouseMOOCstosupplicanthighschool&collegeeducation)versusyoungprofessionals(whouseMOOCstogetaheadintheircareers)versusthoseseekingvocationalskills(whichisverypopularinlessdevelopedcountries).
OnestrikingomissionthatwaspointedoutduringtheQ&AwasthatMOOCshavemostlyabandonedthepre-collegedemographic,especiallybeforehighschool.Inretrospect,thisisnottoosurprising,inlargepartduetotheverydifferentrequirementsforprimaryandsecondaryeducationacrossdifferentstatesandschooldistricts.ButitdoesputadamperonthecurrentMOOCenthusiasm,sincemanyproblemswitheducationstartmuchearlierthancollege.
LessonsLearnedfromLarge-ScaleA/BTesting
RonKohavigaveakeynoteonlessonslearnedfromonlineA/Btesting.Themostinterestingaspectofhistalkwasjusthowwell-tunedtheexistingsystemsare.Onesymptomofahighlytunedsystemisthatit esverydifficulttointuitaboutwhethercertainmodificationswillincreaseordecreasetheperformanceofthesystem(orhavenoeffect).Forexample,hegavetheaudienceanumberofquestionstotheaudience,suchas:"Doesincreasingthedescriptionofthesponsoredadvertisementsleadtoincreasedoverallclicksonads?"Basically,theaudiencecouldnotguessbetterthanrandom.Sothemainlessonistobasicallytofollowthedataanddon'tbeto(emotionally)tiedtoyourownintuitionswhenitcomestooptimizinglargecomplexindustrialsystems.
Sports yticsWorkshop
Ico-organizedthe2ndworkshoponLarge-ScaleSportsytics.ItriedtogetmoreeSportsintotheworkshopthisyear,butalasfellabitshort.ThorstendidgiveaninterestingtalkthatusedeSportsdata,althoughthephenomenonhewasstudyingwasnotspecifictoeSports.Inmanyways,eSportsisanevenbettertestbedforsportsyticsthantraditionalsportsbecausegamereystrack
li llyeverything.
Withinthemoretraditionalsportsregimes,it'sclearth cesstodataremainsalargebottleneck.Manyprofessionalleaguesarehoardingtheirdatalikegold,butsadlydonothavetheexpertiseleveragethedataeffectively.ThesituationactuallyseemsbetterinEurope,whereaccesstotrackedsoccer(sorry,futbol)gamesarerelativelycommon.IntheUS,itseemslikethedataisonlyavailabletoaselectfewsportsyticscompaniessuchasSecondSpectrum.I'mhopefulthatthissituationwillchangeinthenearfutureasthevariousstakeholders emorecomfortablewiththeideathatit'snottherawdatathathasvalue,buttheprocessedartifactsbuiltontopofthatdata.
InterestingPapers
TherewereplentyofinterestingresearchpapersatKDD,ofwhichI'lljustlistafewthatIparticularlyliked.
ADecisionTreeFrameworkforSpatiotemporalSequencePrediction
byTaehwanKim,YisongYue,SarahTaylor,andIainMatthews
I'llstartwithashamelesspieceofself-advertising.IncollaborationwithDisneyResearch,wetrainedamodeltogeneratevisualspeech,i.e.,animatethelowerfaceinresponsetoaudioorphoneticinputs.Seethedemobelow:
Moredetailshere.
InsideJokes:IdentifyingHumorousCartoonCaptions
byDafnaShahaf,EricHorvitz,andRobertMankoff
ProbablythemostinterestingapplicationatKDDwasonstudyingtheanatomyofajoke.Whiletheresultsmaynotseemtoosurprisinginretrospect(e.g.,thepunchlineshouldbeatofthejoke),whatwasreallycoolwasthatthemodelcouldfyifonejokewasfunnierthananotherjoke(i.e.,rankjokes).
CinemaDataMining:TheSmellofFear
byJ?rgWicker,NicolasKrauter,BettinaDerstorff,ChristofSt?nner,EfstratiosBourtsoukidis,ThomasKlüpfel,JonathanWilliams,andStefanKramer
Thiswasacoolpaperthatstudiedhowtheexhaledorganicparticlesvaryinresponsetodifferentemotions.Theauthorsinstrumentedamovietheater'saircirculationsystemwithchemicalsensors,andfoundthatthechemicalsyouexhaleareindicativeofvariousemotionssuchasfearoramusement.Theauthorrepeatedlylamentedthefactthattheydidn'tdothisforanyeroticfi,andsotheydon'tknowwhatthecinematicchemicalsignatureofarousalwouldlooklike.
WhosupportedObamain2012?Ecologicalinferencethroughdistributionregression
bySethFlaxman,Yu-XiangWang,andAlexSmola
Thispaperpresentsanewsolutiontotheecologicalinferenceproblemofinferringindividuallevelpreferencesfromaggregatedata.Theprimarydatatestbedwerecounty-wiseelection esanddemographicdatathatreportedatadifferentgranularityoroverlay.Themainissueishowtoestimate,e.g.,femalepreferenceforoneialcandidate,usingjustthesekindsofaggregatedata.
Certifyingandremovingdisparateimpact
byMichaelFeldman,SorelleFriedler,JohnMoeller,CarlosScheidegger,andSureshVenkatasubramanian
Manypeopleassumethat,becausealgorithmsare"objective"thentheycan'tbebiasedordiscriminatory.Thisassumptionisinvalidbecausethedataorfeaturesthemselvescanbebiased(cf.thisinterviewwithCynthiaDwork).Theauthorsofthispaperproposeawaytodetect&removebiasinmachinelearningmodelsthatistailoredtotheUSlegaldefinitionofbias.Theworkis,ofcourse,preliminary,butthispaperwasarguablythemostthoughtprovokingoftheentireconference.
Edge-WeightedalizedPageRank:BreakingADecade-OldPerformanceBarrier
byWenleiXie,DavidBindel,AlanDemers,andJohannesGehrke
Thispaperproposesareductionapproachto alizedPageRankthatyieldsacomputationalboostbyseveralordersofmagnitude,thusallowing,forthefirsttime, alizePageRanktobecomputedatinctivespeeds.Thispaperwasalsotherecipientofthebestpaperaward.
PostedbyYisongYueat3:48PM
Labels:computerscience,machinelearning,science/technology
2comments:
BrendanO'Connorsaid...
whethercomputationalresearchershavemademuchofadirectimpactonthesciences--it'sagoodpointthatonlyasmallamountofcomputationalworkonostensiblesocialtopics
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數字簽名技術在工業互聯網平臺安全認證體系中的應用報告
- 流域生態功能分區與補償機制優化
- 工業互聯網平臺環境下網絡隔離技術應用案例分析報告2025
- 2025ktv音響燈光設備租賃與技術支持合同
- 水務公司運營管理方案
- 出境旅游AI應用行業跨境出海項目商業計劃書
- 高速飲料灌裝線行業深度調研及發展項目商業計劃書
- 鄉村民宿設計大賽行業跨境出海項目商業計劃書
- 產業園區能源基礎設施的綠色化改造與節能減排報告
- 耐候性建筑隔熱膜行業深度調研及發展項目商業計劃書
- 2025年中國航天日知識競賽考試題庫300題(含答案)
- 《大客戶管理研究的國內外文獻綜述1800字》
- 預防航空人為差錯
- 傷寒傳染病護考題及答案
- 通信行業防洪防汛安全知識
- 平安iq測試題及答案184
- 基坑工程安全技術培訓
- HSE管理體系管理手冊
- 2023版煤礦安全管理人員考試題庫及解析
- 2025年標準育兒嫂合同樣本
- 互聯網金融(同濟大學)知到智慧樹章節測試課后答案2024年秋同濟大學
評論
0/150
提交評論