全等三角形證明方法歸納經典-1文檔資料_第1頁
全等三角形證明方法歸納經典-1文檔資料_第2頁
全等三角形證明方法歸納經典-1文檔資料_第3頁
全等三角形證明方法歸納經典-1文檔資料_第4頁
全等三角形證明方法歸納經典-1文檔資料_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

全等三角形證明方法歸納經典全等三角形的證明,主要應用在證明邊或者是角相等的時候,作為重要的證明手段,很多方法是可以歸納總結出來的,要想正確地表示兩個三角形全等,找出對應的元素是關鍵。全等三角形的應用:運用三角形全等可以證明線段相等、角相等、兩直線垂直等問題,同時能通過判定兩個三角形全等進而證明兩條線段間的位置關系和大小關系.而證明兩條線段或兩個角的和、差、倍、分相等是幾何證明的基礎.在證明的過程中,注意有時會添加輔助線。以下通過典型例題的方式詳解五種常見輔助線的做法。首先我們學習一下找全等三角形的方法:(1)可以從結論出發,尋找要證明的相等的兩條線段(或兩個角)分別在哪兩個可能全等的三角形中;(2)可以從已知條件出發,看已知條件可以確定哪兩個三角形全等;(3)可從條件和結論綜合考慮,看它們能確定哪兩個三角形全等;(4)若上述方法均不可行,可考慮添加輔助線,構造全等三角形。三角形中常見輔助線的作法:①延長中線構造全等三角形;②利用翻折,構造全等三角形;③引平行線構造全等三角形;④作連線構造等腰三角形。1、遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質解題,思維模式是全等變換中的“對折”。例1:如圖,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于點D,CE垂直于BD,交BD的延長線于點E。求證:BD=2CE。思路分析:1)題意分析:本題考查等腰三角形的三線合一定理的應用;2)解題思路:要求證BD=2CE,可用加倍法,延長短邊,又因為有BD平分∠ABC的條件,可以和等腰三角形的三線合一定理結合起來。解答過程:證明:延長BA,CE交于點F,在ΔBEF和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,從而CF=2CE。又∠1+∠F=∠3+∠F=90°,故∠1=∠3。在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。點撥:等腰三角形“三線合一”性質的逆命題在添加輔助線中的應用不但可以提高解題的能力,而且還加強了相關知識點和不同知識領域的聯系,為同學們開拓了一個廣闊的探索空間;并且在添加輔助線的過程中也蘊含著化歸的數學思想,它是解決問題的關鍵。2、若遇到三角形的中線,可倍長中線,使延長線段與原中線長相等,構造全等三角形,利用的思維模式是全等變換中的“旋轉”。例2:如圖,已知ΔABC中,AD是∠BAC的平分線,AD又是BC邊上的中線。求證:ΔABC是等腰三角形。思路分析:1)題意分析:本題考查全等三角形常見輔助線的知識。2)解題思路:在證明三角形的問題中特別要注意題目中出現的中點、中線、中位線等條件,一般這些條件都是解題的突破口,本題給出了AD又是BC邊上的中線這一條件,而且要求證AB=AC,可倍長AD得全等三角形,從而問題得證。解答過程:證明:延長AD到E,使DE=AD,連接BE。又因為AD是BC邊上的中線,∴BD=DC又∠BDE=∠CDA,所以ΔBED≌ΔCAD,故EB=AC,∠E=∠2,∵AD是∠BAC的平分線∴∠1=∠2,∴∠1=∠E,∴AB=EB,從而AB=AC,即ΔABC是等腰三角形。點撥:題目中如果出現了三角形的中線,常加倍延長此線段,再將端點連結,便可得到全等三角形。3、遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點常常是角平分線的性質定理或逆定理。例3:已知,如圖,AC平分∠BAD,CD=CB,AB>AD。求證:∠B+∠ADC=180°。思路分析:1)題意分析:本題考查角平分線定理的應用。2)解題思路:因為AC是∠BAD的平分線,所以可過點C作∠BAD的兩邊的垂線,構造直角三角形,通過證明三角形全等解決問題。解答過程:證明:作CE⊥AB于E,CF⊥AD于F。∵AC平分∠BAD,∴CE=CF。在Rt△CBE和Rt△CDF中,∵CE=CF,CB=CD,∴Rt△CBE≌Rt△CDF,∴∠B=∠CDF,∵∠CDF+∠ADC=180°,∴∠B+∠ADC=180°。點撥:①關于角平行線的問題,常用兩種輔助線;②見中點即聯想到中位線。4、過圖形上某一點作特定的平行線,構造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉折疊”例4:如圖,ΔABC中,AB=AC,E是AB上一點,F是AC延長線上一點,連EF交BC于D,若EB=CF。求證:DE=DF。思路分析:1)題意分析:

本題考查全等三角形常見輔助線的知識:作平行線。2)解題思路:因為DE、DF所在的兩個三角形ΔDEB與ΔDFC不可能全等,又知EB=CF,所以需通過添加輔助線進行相等線段的等量代換:過E作EG//CF,構造中心對稱型全等三角形,再利用等腰三角形的性質,使問題得以解決。解答過程:證明:過E作EG//AC交BC于G,則∠EGB=∠ACB,又AB=AC,∴∠B=∠ACB,∴∠B=∠EGB,∴∠EGD=∠DCF,∴EB=EG=CF,∵∠EDB=∠CDF,∴ΔDGE≌ΔDCF,∴DE=DF。點撥:此題的輔助線還可以有以下幾種作法:5、截長法與補短法,具體作法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,使之與特定線段相等,再利用三角形全等的有關性質加以說明。這種作法,適合于證明線段的和、差、倍、分等類的題目。例5:如圖甲,AD∥BC,點E在線段AB上,∠ADE=∠CDE,∠DCE=∠ECB。求證:CD=AD+BC。思路分析:1)題意分析:

本題考查全等三角形常見輔助線的知識:截長法或補短法。2)解題思路:結論是CD=AD+BC,可考慮用“截長補短法”中的“截長”,即在CD上截取CF=CB,只要再證DF=DA即可,這就轉化為證明兩線段相等的問題,從而達到簡化問題的目的。解答過程:證明:在CD上截取CF=BC,如圖乙在△FCE與△BCE中,CF=CB,∠FCE=∠BCE,CE=CE∴△FCE≌△BCE(SAS),∴∠2=∠1。又∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠CDE=90°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4。在△FDE與△ADE中,∠FDE=∠ADE,DE=DE,∠3=∠4,△FDE≌△ADE(ASA),∴DF=DA,∵CD=DF+CF,∴CD=AD+BC。全等三角形經典模型總結角平分線模型(一)角平分線的性質模型輔助線:(雙垂直)過點G作GE⊥射線AC1、如圖,已知,∠1=∠2,∠3=∠4,求證:AP平分∠BAC.2、如圖,在四邊形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.(二)角平分線+垂線,等腰三角形必呈現輔助線:1.延長ED交射線OB于F輔助線2.過點E作EF∥射線OB例1.如圖,在△ABC中,∠BAC的角平分線AD交BC于點D,且AB=AD,作CM⊥AD交AD的延長線于M.求證:AM=1/2(AB+

AC).2(三)角分線,分兩邊,對稱全等要記全(截長)飛鏢形輔助線:都是在射線ON上取點B,使OB=OA,從而使△OAC≌△OBC.1、如圖,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求證:AB+BP=BQ+AQ.2、在△ABC中,AB>AC,AD是∠BAC的平分線,P是線段AD上任意一點(不與A重合).求證:AB-AC>PB-PC.3、如圖,△ABC中,AB=AC,∠A=100°,∠B的平分線交AC于D,

求證:AD+BD=BC(四)一線三等角模型(弦圖模型)(不一定垂直,滿足三個角相等即可)1、已知:如圖所示,在△ABC中,AB=AC,∠BAC=90°,D為AC中點,AF⊥BD于點E,交BC于F,連接DF.求證:∠ADB=∠CDF.變式1,已知:如圖所示,在△ABC中,AB=AC,AM=CN,AF⊥BM于E,交BC于F,連接NF.求證:(1)∠AMB=∠CNF;(2)BM=AF+FN.變式2.在變式1的基礎上,其他條件不變,只是將BM和FN分別延長交于點P,求證:(1)PM=PN;(2)PB=PF+AF.三,手拉手模型1、△ABE和△ACF均為等邊三角形結論:(1)△ABF≌△AEC.(2)∠BOE=∠BAE=60°.(3)OA平分∠EOF.(四點共圓證)拓展:1.△ABC和△CDE均為等邊三角形1.AD=BE;2.∠ACB=∠AOB;3.△PCQ為等邊三角形;4.PQ∥AE;5.AP=BQ;6.CO平分∠AOE;(四點共圓證)7.OA=OB+OC;8.OE=OC+OD.(7.8.需構造等邊三角形證明)2.△ABD和△ACE均為等腰直角三角形結論:(1)BE=CD;(2)BE⊥CD.3.四邊形ABEF和四邊形ACHD均為正方形結論:(1)BD=CF;(2)BD⊥CF.例3.如圖①,點M為銳角三角形ABC內任意一點,連接AM、BM、CM.以AB為一邊向外作等邊三角形△ABE,將BM繞點B逆時針旋轉60°得到BN,連接EN.1.求證:△AMB≌△ENB;2.若AM+BM+CM的值最小,則稱點M為△ABC的費爾馬點.若點M為△ABC的費爾馬點,試求此時∠AMB、∠BMC、∠CMA的度數;3.小翔受以上啟發,得到一個作銳角三角形費爾馬點的簡便方法:如圖②,分別以△ABC的AB、AC為一邊向外作等邊△ABE和等邊△ACF,連接CE、BF,設交點為M,4.則點M即為△ABC的費爾馬點.試說明這種作法的依據.四、半角模型思路:1.補短(旋轉)輔助線:①延長CD到E,使ED=BM,連AE或延長CB到F,使FB=DN,連AF②將△ADN繞點A順時針旋轉90°得△ABF,注意:旋轉需證F,B,M三點共線結論:(1)MN=BM+DN;(2)三角形CMN的周長=2AB;(3)AM、AN分別平分∠BMN、∠MND.2、翻折(對稱)輔助線:①作AP⊥MN交MN于點P②將△ADN,△ABM分別沿AN,AM翻折,但一定要證明M,P,N三點共線.例1、在正方形ABCD中,若M、N分別在邊BC、CD上移動,且滿足MN=BM+DN,求證:(1)∠MAN=45°;(2)三角形CMN的周長=2AB;(3)AM、AN分別平分∠BMN和∠DNM.變式:在正方形ABCD中,已知∠MAN=45°,若M、N分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論