




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第第頁2022-2023學年福建省泉州市晉江市八年級(下)期末數學試卷(含解析)2022-2023學年福建省泉州市晉江市八年級(下)期末數學試卷
學校:___________姓名:___________班級:___________考號:___________
第I卷(選擇題)
一、選擇題(本大題共10小題,共40.0分。在每小題列出的選項中,選出符合題目的一項)
1.下列計算正確的是()
A.B.C.D.
2.函數中自變量的取值范圍是()
A.B.C.D.
3.我國的泉州灣跨海大橋是世界首座跨海高鐵大橋,其創新采用的“石墨烯重防腐涂裝體系”,將實現年超長防腐壽命的突破石墨烯作為本世紀發現的最具顛覆性的新材料之一,其理論厚度僅有,請將用科學記數法表示為()
A.B.C.D.
4.點關于軸對稱點的坐標為()
A.B.C.D.
5.在平行四邊形、矩形、菱形、正方形中,既是軸對稱圖形又是中心對稱圖形的有()
A.個B.個C.個D.個
6.為考察甲、乙、丙、丁四種水稻的長勢,在同一時期分別從中隨機抽取部分稻苗,獲得苗高的平均數與方差分別為:,,,則稻苗又高又整齊的是()
A.甲B.乙C.丙D.丁
7.如圖,的對角線、交于點,且,若的周長為,則的長是()
A.
B.
C.
D.
8.如圖,在平面直角坐標系中,直線與直線的交點坐標為,則關于的不等式的解集是()
A.B.C.D.
9.在四邊形中,,,連結、,則添加下列條件后,仍不能判定四邊形為正方形的是()
A.
B.
C.
D.
10.如圖,點的坐標為,若點都在一次函數的圖象上,則下列可能表示點的位置的是()
A.點
B.點
C.點
D.點
第II卷(非選擇題)
二、填空題(本大題共6小題,共24.0分)
11.計算:______.
12.在中,若,則______
13.在平面直角坐標系中,直線不經過第______象限.
14.如圖,根據小孔成像的原理,當像距小孔到像的距離和物高蠟燭火焰高度不變時,火焰的像高單位:是物距蠟燭到小孔的距離單位:的反比例函數,當時,則關于的函數表達式是______.
15.某同學在德、智、體、美、勞五項評價的成績分別為:分、分、分、分、分若這項成績的比例依次為::::,則該同學這項評價的平均成績為______分
16.如圖,在菱形中,,,點為線段上不與端點重合的一個動點過點作直線、直線的垂線,垂足分別為點、點連結,在點的運動過程中,的最小值等于______.
三、解答題(本大題共9小題,共86.0分。解答應寫出文字說明,證明過程或演算步驟)
17.本小題分
計算:.
18.本小題分
先化簡,再求值:,其中.
19.本小題分
如圖,在四邊形中,對角線、交于點,,求證:四邊形是平行四邊形.
20.本小題分
為了加強學生的心理健康教育,某校組織七年級一部分學生進行了心理健康知識測試,并根據測試成績繪制出如下不完整的統計圖.
根據所給的信息,解答下列問題:
求七年級參加測試的學生人數,并將條形統計圖補畫完整;
請求出這組測試成績的眾數和中位數.
21.本小題分
已知直線與軸交于點,且經過點.
求這條直線的函數表達式;
若點的坐標為,求的面積.
22.本小題分
如圖,作矩形關于對角線的軸對稱圖形,交于點,交于點.
利用直尺和圓規將圖形補畫完整;保留作圖痕跡,不寫作法和證明
若,,求四邊形的周長.
23.本小題分
某網店預感“”期間口罩的銷量會增加,計劃購進一次性醫用外科口罩和口罩進行銷售,已知口罩的進貨價比外科口罩每箱貴元,外科口罩和口罩的銷售價分別為每箱元和元該網店用元購進外科口罩的數量與用元購進口罩的數量相同.
求兩種口罩進貨價每箱各是多少元?
該網店計劃新購進外科口罩和口罩共箱,若外科口罩的進貨數量不少于口罩數量的倍,且不超過箱則應如何進貨才能使這批口罩全部售完后的利潤最多?
24.本小題分
探究:如圖,在中,,線段是邊上的中線.
請通過測量,試猜想與的數量關系是______;
證明你的猜想;
應用的結論解決問題:如圖,在菱形中,對角線和相交于點,,過點作直線,點在線段上且不與點重合,以為邊作矩形,使得點在直線上點不與點重合,連接,試求的度數.
25.本小題分
如圖,在平面直角坐標系中,直線與軸交于點,與軸交于點,分別過點、作軸、軸的垂線,兩線交于點,函數的圖象與線段交于點,交于點.
求線段的長度;
試判斷點是否在函數的圖象上,并說明理由;
已知,點在軸上,點在函數的圖象上,當四邊形為平行四邊形時,求點的坐標.
答案和解析
1.【答案】
【解析】解:,因此選項A不符合題意;
B.,因此選項B符合題意;
C.,因此選項C不符合題意;
D.,因此選項D不符合題意;
故選:.
根據負整數指數冪,零指數冪的運算性質進行計算即可.
本題考查負整數指數冪,零指數冪,理解負整數指數冪、零指數冪的意義是正確解答的前提.
2.【答案】
【解析】解:由題意得:,
故選:.
根據分母不為可得,即可解答.
本題考查了函數自變量的取值范圍,熟練掌握分母不為是解題的關鍵.
3.【答案】
【解析】解:,
故選:.
把小于的正數用科學記數法寫成的形式即可得出結論.
本題考查了科學記數法,解題的關鍵是掌握科學記數法.
4.【答案】
【解析】解:點關于軸對稱點的坐標為,
故選:.
根據關于軸對稱的點的坐標特征,即可解答.
本題考查了關于軸、軸對稱的點的坐標,熟練掌握關于軸、軸對稱的點的坐標特征是解題的關鍵.
5.【答案】
【解析】解:平行四邊形不是軸對稱圖形,是中心對稱圖形;
矩形是軸對稱圖形,是中心對稱圖形;
菱形是軸對稱圖形,是中心對稱圖形;
正方形是軸對稱圖形,是中心對稱圖形,
故選:.
根據軸對稱圖形與中心對稱圖形的概念進行判斷即可.
本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉度后兩部分重合.
6.【答案】
【解析】解:,,
丙、丁的稻苗比甲、丙要高,
,,
甲、丙稻苗的長勢比乙、丁的長勢整齊,
稻苗又高又整齊的是丙.
故選:.
根據:,,可得丙、丁的稻苗比甲、丙要高,再由,,可得甲、丙稻苗的長勢比乙、丁的長勢整齊,即可求解.
本題考查了方差和平均數的知識,掌握方差越小,越穩定是關鍵.
7.【答案】
【解析】解:四邊形是平行四邊形,
,,
,
,
的周長是,
,
,
.
故選:.
直接利用平行四邊形的性質得出,,再利用已知求出的長,進而得出答案.
此題主要考查了平行四邊形的性質,正確得出的值是解題關鍵.
8.【答案】
【解析】解:由得到:,
由圖象知:關于的不等式的解集為,
故選:.
根據圖象利用一次函數與一元一次不等式的關系即可求解.
本題考查了一次函數與一元一次不等式,屬于基礎題,關鍵是掌握利用圖象獲取信息的能力.
9.【答案】
【解析】解:,,
四邊形是矩形,
,
四邊形是正方形,
故A不符合題意;
,
,
,
,
,
,
,
四邊形是菱形,
,
四邊形是正方形,
故B不符合題意;
,,
垂直平分,
,
但和不一定相等,
四邊形不一定是正方形,
故C符合題意;
,
,
,
,
,
,,
四邊形是平行四邊形,
,,
四邊形是正方形,
故D不符合題意.
故選:.
由,判定四邊形是矩形,又,因此四邊形是正方形,由推出四邊形是菱形,又,即可判定四邊形是正方形,由,不能判定四邊形是正方形,由,可以推出,因此,,判定四邊形是平行四邊形,又,,因此四邊形是正方形,
本題考查正方形的判定,關鍵是掌握正方形的判定方法.
10.【答案】
【解析】解:點在第二象限,則點也在第二象限;
A、點在第一象限,點也在第一象限,而據圖象在點之后函數在軸下方,故不符合題意;
B、點在第四象限,則點在第四象限,可能符合題意;
C、點在第三象限,故不符合題意;
D、點在第二象限,且在點下方,故不可能在函數圖象上,故不符合題意;
故選:.
根據題意結合函數圖象,可逐個推導出可能性,得出答案.
本題考查了一次函數圖象上點的坐標特征,掌握一次函數圖象上點的坐標特征是解題的關鍵.
11.【答案】
【解析】解:原式,
故答案為:.
根據分式的乘方的運算法則進行運算求解.
本題考查了分式發乘方,掌握運算法則是解題的關鍵.
12.【答案】
【解析】解:四邊形是平行四邊形,
.
故答案為:.
由平行四邊形的性質:對角相等,得出.
此題考查的是平行四邊形的性質,運用其對角相等求解.
13.【答案】一
【解析】解:一次函數中,,,
函數圖象經過第二、三、四象限,不經過第一象限.
故答案為:一.
根據一次函數的性質解答即可.
本題考查的是一次函數的性質,熟知一次函數的圖象與系數的關系是解題的關鍵.
14.【答案】
【解析】解:設解析式為,
把,代入,得:
,
解得,
函數解析式為,
故答案為:.
根據待定法求反比例函數的解析式即可.
本題考查了反比例函數的應用,熟練掌握待定系數法求解析式是解題的關鍵.
15.【答案】
【解析】解:由題意可得,該同學這項評價的平均成績為:
分,
故答案為:.
根據加權平均數的計算方法即可解答本題.
本題主要考查了加權平均數,明確加權平均數的計算方法是解答本題的關鍵.
16.【答案】
【解析】解:如圖,連接交于點,連接,
四邊形是菱形,
,,,
在中,由勾股定理得:,
,
,,,
,
,
解得:,
即的值為定值,
當最小時,有最小值,
當時,的最小值,
的最小值,
故答案為:.
連接交于點,連接,由菱形的性質和勾股定理得,再由三角形面積求出,即的值為定值,然后得出當時,的最小值,即可解決問題.
本題考查了菱形的性質、勾股定理、最小值以及三角形面積等知識,熟練掌握菱形的性質是解題的關鍵.
17.【答案】解:原式
.
【解析】先化簡,再通分計算.
本題考查分式的應用,熟練掌握分式的運算法則和運算順序是解題關鍵.
18.【答案】解:原式
,
當時,原式.
【解析】首先按照分式的運算法則和運算順序對原式進行化簡,然后把的值代入化簡后的算式解答即可.
本題考查分式的化簡求值,熟練掌握分式的運算法則、運算順序和化簡求值的方法和步驟是解題關鍵.
19.【答案】證明:在與中,
,
≌,
,
,
四邊形是平行四邊形.
【解析】根據全等三角形的性質得到,根據平行四邊形的判定定理即可得到結論.
本題考查了全等三角形的判定和性質,平行四邊形的判定,熟練掌握平行四邊形的判定定理是解題的關鍵.
20.【答案】解:調查人數為:人,
成績為分的學生人數:人,
成績為分的學生人數:人,
補全條形統計圖如下:
將這名學生成績從小到大排列,處在中間位置的兩個數的平均數為分,因此中位數是分,
這名學生成績出現次數最多的是分,共出現次,因此眾數是分,
答:眾數是分,中位數是分.
【解析】從兩個統計圖可知,樣本中成績為分的有人,占調查人數的,由頻率可求出調查人數,進而求出成績為分,分的學生人數,補全條形統計圖;
根據中位數、眾數的定義和計算方法進行計算即可.
本題考查條形統計圖、扇形統計圖,理解兩個統計圖中數據中間的關系是正確解答的前提,掌握頻率是正確解答的關鍵.
21.【答案】解:由題意得:,
解得:,
;
當時,,
解得:,
,
的面積為:.
【解析】根據題意列方程求解;
根據三角形的面積公式求解.
本題考查了待定系數法,掌握三角形面積的計算公式是解題的關鍵.
22.【答案】解:圖形如圖所示:
矩形關于對角線的軸對稱圖形,
四邊形是矩形,,
,
,即,
四邊形是平行四邊形,
,,
≌,
,
四邊形是菱形,
,
,
,即,
,
菱形的周長為.
【解析】分別以,為圓心,,為半徑兩弧交于點,分別以,為圓心,,為半徑作弧,兩弧交于點,連接,,,即可;
首先證明四邊形是菱形,利用勾股定理求出,可得結論.
本題考查作圖復雜作圖,菱形的判定,矩形的性質等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題.
23.【答案】解:設外科口罩每箱的價格為元,則口罩每箱的價格為元,
由題意可得:,
解得,
經檢驗,是原分式方程的解,
,
答:外科口罩每箱的價格為元,則口罩每箱的價格為元;
設購進外科口罩箱,則口罩購進箱,利潤為元,
由題意可得:,
隨的增大而減小,
外科口罩的進貨數量不少于口罩數量的倍,且不超過箱,
,
解得,
當時,取得最大值,此時,,
答:當購進外科口罩箱,則口罩購進箱時,才能使這批口罩全部售完后的利潤最多.
【解析】根據該網店用元購進外科口罩的數量與用元購進口罩的數量相同,可以列出相應分式方程,然后求解即可;
根據題意和中的結果,可以寫出利潤與購進醫用外科口罩數量的函數關系式,再根據外科口罩的進貨數量不少于口罩數量的倍,且不超過箱,可以得到相應的不等式組,即可得到醫用外科口罩數量的取值范圍,再根據一次函數的性質,即可得到利潤的最大值.
本題考查分式方程的應用、一次函數的應用,解答本題的關鍵是明確題意,列出相應的分式方程和一次函數解析式,利用一次函數的性質求最值.
24.【答案】
【解析】解:猜想為;
證明:如圖,延長到,使,連接,,
是中線,
,
又,
四邊形是平行四邊形,
,
四邊形是矩形,
,
;
解:如圖,連接,交于點,連接,
四邊形是矩形,
,
四邊形是菱形,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新規定:實習生也需簽訂勞動合同
- 2025【范本】房屋租賃合同協議
- 2025簡易個人借款合同書范本下載
- 2025體育賽事組委會責任保險合同樣本
- 2025墓地使用權轉讓合同
- 2025項目環境監測評估驗收技術服務合同
- 2025房屋買賣合同模板2
- 2025交通運輸合同協議
- 2025解除租賃合同協議書
- 西北狼聯盟2025屆高三仿真模擬(二)歷史試題試卷含解析
- 2024年職業病防治考試題庫附答案(版)
- GB/T 4706.53-2024家用和類似用途電器的安全第53部分:坐便器的特殊要求
- 《智能網聯汽車用攝像頭硬件性能要求及試驗方法》編制說明
- 2024年3月ITSMS信息技術服務管理體系基礎(真題卷)
- 節能評審和節能評估文件編制費用收費標準
- 2023-2024年《勞務勞動合同樣本范本書電子版模板》
- 中國居民口腔健康狀況第四次中國口腔健康流行病學調查報告
- MOOC 數據挖掘-國防科技大學 中國大學慕課答案
- 中藥注射劑合理使用培訓
- 第13課+清前中期的興盛與危機【中職專用】《中國歷史》(高教版2023基礎模塊)
- 2024年國家糧食和物資儲備局直屬事業單位招聘筆試參考題庫附帶答案詳解
評論
0/150
提交評論