線性方程組的表示消元法詳解演示文稿_第1頁
線性方程組的表示消元法詳解演示文稿_第2頁
線性方程組的表示消元法詳解演示文稿_第3頁
線性方程組的表示消元法詳解演示文稿_第4頁
線性方程組的表示消元法詳解演示文稿_第5頁
已閱讀5頁,還剩27頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

線性方程組的表示消元法詳解演示文稿目前一頁\總數(shù)三十二頁\編于八點(優(yōu)選)線性方程組的表示消元法目前二頁\總數(shù)三十二頁\編于八點讓3目前三頁\總數(shù)三十二頁\編于八點借助于矩陣乘法,線性方程組可表示為4目前四頁\總數(shù)三十二頁\編于八點5目前五頁\總數(shù)三十二頁\編于八點線性方程組研究的主要問題為:(1)線性方程組是否有解?(2)線性方程組如有解,有多少個解?(3)線性方程組如有解,如何求解?如解有無窮多,如何表示所有的解?6目前六頁\總數(shù)三十二頁\編于八點引例求解線性方程組用消元法解下列方程組的過程.消元法解線性方程組7目前七頁\總數(shù)三十二頁\編于八點解8目前八頁\總數(shù)三十二頁\編于八點用“回代”的方法求出解:9目前九頁\總數(shù)三十二頁\編于八點解得(2)10目前十頁\總數(shù)三十二頁\編于八點從上面的例子我們可以看出,用消元法解線性方程組,實際上是對線性方程組施行了以下三種變換: (1)互換兩個方程的位置; (2)用一非零數(shù)c乘某一方程; (3)把其中一個方程的k倍加到另一個方程上我們稱以上三種變換為線性方程組的初等變換

11目前十一頁\總數(shù)三十二頁\編于八點這三種初等變換只改變了線性方程組的系數(shù)和常數(shù),而未知量保持不變。因此,如果將未知量與系數(shù)和常數(shù)項分離開來,實際上是對系數(shù)和常數(shù)項構(gòu)成的增廣矩陣作了三種初等行變換。因此解線性方程組時只需對由系數(shù)和常數(shù)項所構(gòu)成的增廣矩陣作初等行變換。

12目前十二頁\總數(shù)三十二頁\編于八點問題:(1)為什么經(jīng)過一系列的初等行變換以后得到的新的方程組的解為原方程組的解。我們需要給出它的理論依據(jù)。(2)是否任意一個線性方程組都有解,在什么條件下方程組無解?

13目前十三頁\總數(shù)三十二頁\編于八點14目前十四頁\總數(shù)三十二頁\編于八點15目前十五頁\總數(shù)三十二頁\編于八點階梯矩陣定義例第一,二,三行的首元所在的列依次為2,1,3,不是嚴格增的,故不是階梯行.16目前十六頁\總數(shù)三十二頁\編于八點(1)可劃出一條階梯線,線的下方全為零;(2)每個臺階只有一行,臺階數(shù)即是非零行的行數(shù),階梯線的豎線后面的第一個元素為非零元,即非零行的第一個非零元.行階梯形矩陣特點:17目前十七頁\總數(shù)三十二頁\編于八點回顧:消元法解方程的過程實際上就是用一系列初等行變換把增廣矩陣化為階梯形矩陣(特別是若當階梯形)的過程.現(xiàn)重新用初等行變換化增廣矩陣為Jordan階梯形的方法求解線性方程組18目前十八頁\總數(shù)三十二頁\編于八點解19目前十九頁\總數(shù)三十二頁\編于八點20目前二十頁\總數(shù)三十二頁\編于八點21目前二十一頁\總數(shù)三十二頁\編于八點階梯形22目前二十二頁\總數(shù)三十二頁\編于八點若當階梯形于是得到原方程組的同解方程組23目前二十三頁\總數(shù)三十二頁\編于八點例

解線性方程組24目前二十四頁\總數(shù)三十二頁\編于八點解:寫出增廣矩陣,對其進行初等行變換化簡:以為增廣矩陣的線性方程組有一矛盾方程0=47,從而原方程組無解。

25目前二十五頁\總數(shù)三十二頁\編于八點注:若原方程組與同解方程組中出現(xiàn)矛盾方程,則原方程組無解。

26目前二十六頁\總數(shù)三十二頁\編于八點例

用消元法解線性方程組27目前二十七頁\總數(shù)三十二頁\編于八點解:28目前二十八頁\總數(shù)三十二頁\編于八點所以原方程組的解為,與用Gramer法則所得結(jié)果一樣。

29目前二十九頁\總數(shù)三十二頁\編于八點例

解齊次線性方程組AX=0,其中系數(shù)矩陣30目前三十頁\總數(shù)三十二頁\編于八點解:

與原方程組同解的齊次線性方程組BX=0的一般形式為,

31目前三十一頁\總數(shù)三十二頁\編于八點很顯然對于任意的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論