




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四輥冷軋機(jī)軋制過程工作輥溫度場及熱變形預(yù)測控制研究摘要:本文針對四輥冷軋機(jī)軋制過程中工作輥溫度場變化和熱變形的預(yù)測控制問題展開了研究。針對工作輥溫度場變化的復(fù)雜性,本文采用了多物理場耦合模型,考慮了板材溫度場、滾制接觸變形、輥筒轉(zhuǎn)動、輥殼傳熱等因素,并采用有限元方法對模型進(jìn)行了求解,得到了工作輥溫度變化規(guī)律。同時,本文建立了基于BP神經(jīng)網(wǎng)絡(luò)的熱變形預(yù)測模型,通過對軋制實(shí)驗(yàn)數(shù)據(jù)的建模,得到了預(yù)測模型,并對模型進(jìn)行了仿真驗(yàn)證。最后,本文基于預(yù)測模型設(shè)計(jì)了預(yù)測控制算法,并進(jìn)行了仿真模擬。仿真結(jié)果表明,本文所提出的預(yù)測控制算法能夠有效地控制軋制過程中的溫度變化和熱變形,提高了軋制品質(zhì)和生產(chǎn)效率。
關(guān)鍵詞:四輥冷軋機(jī);工作輥溫度場;熱變形預(yù)測控制;多物理場耦合模型;BP神經(jīng)網(wǎng)絡(luò);仿真模擬
Abstract:Thispaperfocusesonthestudyofthetemperaturefieldvariationoftheworkingrollsandthepredictionandcontrolofthermaldeformationintheprocessofcoldrollingonafour-rollmill.Consideringthecomplexityofthetemperaturefieldchangeoftheworkingrolls,amultiphysicscouplingmodelisadoptedinthispaper,whichtakesintoaccountthetemperaturefieldoftheplate,therollingcontactdeformation,therotationoftherollers,theheattransferoftherollershellandotherfactors.Thefiniteelementmethodisusedtosolvethemodel,andthetemperaturechangeoftheworkingrollsisobtained.Atthesametime,athermaldeformationpredictionmodelbasedonBPneuralnetworkisestablishedinthispaper.Bymodelingtherollingexperimentaldata,thepredictionmodelisobtainedandverifiedbysimulation.Finally,basedonthepredictionmodel,thepredictionandcontrolalgorithmisdesignedandsimulated.Thesimulationresultsshowthattheproposedpredictionandcontrolalgorithmcaneffectivelycontrolthetemperaturechangeandthermaldeformationintherollingprocess,andimprovethequalityandproductionefficiencyoftherollingproducts.
Keywords:four-rollmill;workingrolltemperaturefield;thermaldeformationpredictionandcontrol;multiphysicscouplingmodel;BPneuralnetwork;simulationandmodeling。Intherollingprocess,theworkingrolltemperaturefieldandthermaldeformationareimportantfactorsthataffectthequalityandproductionefficiencyoftherollingproducts.Toeffectivelycontrolthesefactors,amultiphysicscouplingmodelwasproposedtodescribetherollingprocess,whichtakesintoaccounttheheattransfer,deformation,andstressdistributioninthefour-rollmill.
Basedonthemultiphysicscouplingmodel,aBPneuralnetworkwastrainedtopredictthetemperaturechangeandthermaldeformationduringtherollingprocess.Thetrainingdataweregeneratedbysimulatingtherollingprocessunderdifferentrollingspeeds,rollingforces,andinitialtemperatures.
Usingthepredictedtemperatureanddeformationdata,acontrolalgorithmwasdevelopedtoadjusttherollingparametersinreal-time,suchastherollingspeed,rollingforce,andcoolantflowrate.Thecontrolalgorithmwasdesignedtominimizethetemperaturechangeandthermaldeformationintheworkingroll,whilemaintainingthedesiredproductqualityandproductionefficiency.
Tovalidatetheproposedpredictionandcontrolalgorithm,simulationswereconductedunderdifferentrollingconditions.Thesimulationresultsshowedthatthealgorithmeffectivelycontrolledthetemperaturechangeandthermaldeformationintheworkingroll,andimprovedthequalityandproductionefficiencyoftherollingproducts.
Overall,theproposedmultiphysicscouplingmodel,BPneuralnetwork,andcontrolalgorithmprovideapromisingapproachforimprovingtheprecisionandefficiencyoftherollingprocess.Furtherresearchisneededtovalidatethealgorithminreal-worldrollingapplicationsandtooptimizethealgorithmfordifferentrollingmaterialsandproductspecifications。Inadditiontotheproposedapproach,thereareothermethodsbeingdevelopedtoimprovetherollingprocess.Onesuchmethodistheuseofadvancedmaterialmodelstosimulatetherollingprocessandpredictthebehaviorofthematerial.Thesemodelsconsiderthemicrostructureofthematerial,theinteractionsbetweenthematerialandtherolls,andthethermalconditionsduringtheprocess.
Anotherareaofresearchisthedevelopmentofintelligentcontrolsystemsthatcanmonitorandadjusttherollingprocessinreal-time.Thesesystemsusesensorstocollectdataontherollingprocess,andadvancedalgorithmstoanalyzethedataandmakeadjustmentstotheprocessparameters.
Furthermore,theuseofadvancedsensorsandsystemsformeasuringtheshapeandprofileoftherolledproductisanimportantareaofresearch.Thesesensorscanprovidereal-timefeedbackonthequalityoftheproductandallowforadjustmentstobemadetotherollingprocesstoensurethattheproductmeetsthedesiredspecifications.
Inconclusion,therollingprocessisacomplexandmulti-physicsprocessthatrequirescarefulcontrolandoptimization.Theproposedapproach,whichcombinesamultiphysicscouplingmodel,BPneuralnetwork,andcontrolalgorithm,providesapromisingsolutionforimprovingtheprecisionandefficiencyoftherollingprocess.However,furtherresearchisneededtovalidateandoptimizethealgorithmfordifferentrollingmaterialsandproductspecifications.Moreover,othermethodssuchastheuseofadvancedmaterialmodels,intelligentcontrolsystems,andadvancedsensorsshouldalsobeexploredtoenhancetherollingprocess。Onepotentialareaforfutureresearchinimprovingtherollingprocessistheuseofadvancedmaterialmodels.Thebehaviorofmaterialsduringtherollingprocesscanbecomplexanddifficulttopredict,especiallyforadvancedmaterialssuchascompositesandalloys.Therefore,theuseofadvancedmaterialmodels,suchascrystalplasticityorcontinuumdamagemechanics,couldprovideamoreaccuraterepresentationofthebehaviorofthematerialduringtherollingprocess.Thiscouldleadtomoreprecisecontroloftheprocessandpotentiallyimprovedproductquality.
Intelligentcontrolsystemscouldalsobeexploredasameansofimprovingtheefficiencyandprecisionoftherollingprocess.Thesesystemscouldincorporatedatafromsensorsmonitoringtherollingprocess,aswellasothervariablessuchastemperatureandhumidity,tooptimizetheprocessinreal-time.Byusingmachinelearningalgorithmsandotheradvancedtechniques,thesesystemscouldadapttochangingconditionsandcontinuouslyimprovetherollingprocess.
Finally,theuseofadvancedsensorscouldalsoenhancetherollingprocess.Forexample,advancedimagingtechniquessuchasmicrocomputedtomographycouldbeusedtoprovidedetailedinformationaboutthemicrostructureofthematerialduringtherollingprocess.Thisinformationcouldbeusedtoadjusttheprocessinreal-timeandensureoptimalproductquality.
Inconclusion,therollingprocessplaysacriticalroleintheproductionofawiderangeofproducts,includingmetals,plastics,andcomposites.Avarietyofmethodscanbeusedtoimprovetheprecisionandefficiencyoftheprocess,includingtheuseofmultiphysicsmodels,BPneuralnetworks,andcontrolalgorithms.However,furtherresearchisneededtovalidateandoptimizethesemethods,aswellasexploreotherapproachessuchasadvancedmaterialmodels,intelligentcontrolsystems,andadvancedsensors.Bycontinuingtoadvanceourunderstandingoftherollingprocess,wecanimproveproductquality,reducewaste,andenhancethecompetitivenessofindustriesaroundtheworld。Inadditiontothemethodsmentionedabove,thereareseveralotheravenuesofresearchthatcanbeexploredtoimprovetherollingprocess.Onesuchareaisadvancedmaterialmodels,whichcanhelptobetterpredictthebehaviorofthematerialduringrolling.Thiscanleadtoimprovedprocessdesignandgreatercontroloverthefinalproductquality.
Intelligentcontrolsystemsareanotherareaofresearchthatcouldhaveasignificantimpactontherollingprocess.Byincorporatingmachinelearningalgorithmsandreal-timedataanalysis,thesesystemscanoptimizetherollingprocesson-the-fly,adaptingtochangingconditionsandimprovingefficiencyandproductquality.Additionally,theuseofadvancedsensors,suchastemperatureandstrainsensors,canprovidemoreaccuratedataandfeedbacktocontrolsystems,furtherenhancingtheireffectiveness.
Therearealsoseveralchallengesassociatedwiththerollingprocessthatneedtobeaddressed.Onesuchchallengeistheneedtoreducerollingforceinordertodecreasewearandtearontheequipment,aswellasreduceenergyconsumption.Thiscanbeachievedthroughtheuseoflubricants,suchasoilorwater,aswellasthroughthedevelopmentofnewmaterialsandcoatingsthatreducefriction.
Anotherchallengeistheneedtoimprovetheaccuracyandprecisionoftherollingprocess.Thisisparticularlyimportantinindustriessuchasaerospaceandautomotive,whereevensmalldeviationsinproductdimensionscanhavesignificantconsequences.Toaddressthischallenge,researcherscanexploretheuseofadvancedmetrologytechniques,suchaslaserscanningandmicroscopy,toimprovemeasurementaccuracyandresolution.
Finally,thereisaneedforgreatercollaborationandknowledgesharingbetweenresearchers,industryleaders,andgovernmentagencies.Byworkingtogether,wecanbetterunderstandthechallengesassociatedwiththerollingprocessanddevelopmoreeffectivesolutionsthatimproveproductquality,reducewaste,andenhancecompetitiveness.
Inconclusion,therollingprocessisacritical
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國離子刻蝕機(jī)市場分析及競爭策略研究報(bào)告
- 2025至2030年中國電子鎮(zhèn)流器多點(diǎn)溫度巡檢儀市場分析及競爭策略研究報(bào)告
- 2025至2030年中國油壓熱壓整形機(jī)市場分析及競爭策略研究報(bào)告
- 2025至2030年中國枸杞提取物市場分析及競爭策略研究報(bào)告
- 2025至2030年中國射流式深井自動泵市場分析及競爭策略研究報(bào)告
- 2025至2030年中國衛(wèi)生消毒用品市場分析及競爭策略研究報(bào)告
- 2025至2030年中國乳品加工罐市場分析及競爭策略研究報(bào)告
- 機(jī)電專業(yè)培訓(xùn)
- 幼兒園消毒液培訓(xùn)
- 角膜白斑護(hù)理查房
- 裝飾設(shè)計(jì)公司利潤分析報(bào)告
- 國際貿(mào)易咨詢服務(wù)合作協(xié)議
- 新生兒吸入性肺炎的觀察與護(hù)理
- 醫(yī)院布草洗滌服務(wù)方案(技術(shù)方案)
- 嬰幼兒輔食添加課件
- 單片機(jī)課程設(shè)計(jì)之超聲波測距-電子工程系單片機(jī)課程設(shè)計(jì)報(bào)告
- 寧騷公共政策學(xué)
- 地下室頂板行車與堆載驗(yàn)算與加固方案
- GB/T 37234-2018文件鑒定通用規(guī)范
- 高中英語讀后續(xù)寫教學(xué)策略的探究
- 2022年動畫制作行業(yè)分析及未來五至十年行業(yè)發(fā)展報(bào)告
評論
0/150
提交評論