高通量計算集成機器學習催化描述符設計新型二維MXenes析氫催化劑_第1頁
高通量計算集成機器學習催化描述符設計新型二維MXenes析氫催化劑_第2頁
高通量計算集成機器學習催化描述符設計新型二維MXenes析氫催化劑_第3頁
高通量計算集成機器學習催化描述符設計新型二維MXenes析氫催化劑_第4頁
高通量計算集成機器學習催化描述符設計新型二維MXenes析氫催化劑_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

VIP免費下載

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

高通量計算集成機器學習催化描述符設計新型二維MXenes析氫催化劑摘要:

二維MXenes作為一種具有優異催化性能的材料,其析氫性能的研究顯得尤為重要。然而,傳統的試錯方法耗費時間和資源,難以大規模篩選出性能優異的MXenes。因此,我們提出了一種基于高通量計算和機器學習的催化描述符設計方法,以加速和優化MXenes的析氫性能預測和發現過程。本文首先通過大量密度泛函理論計算篩選出112種可能的析氫MXenes,并通過Fe原子摻雜進一步優化其析氫性能,得到7種性能優異的FedopedMXenes。接著,我們基于多項式回歸、隨機森林和支持向量回歸等機器學習算法構建了基于17種物理和化學性質的催化描述符,并通過訓練集和測試集的誤差分析,選擇了隨機森林作為最佳預測模型。最后,我們使用該模型預測了所有112種MXenes的析氫性能,并發現了15種前所未有的性能優異MXenes,其中析氫活性高于Ni和Pd催化劑,且可能具有實際應用價值。

關鍵詞:MXenes;催化描述符;高通量計算;機器學習;析氫。

Abstract:

Asakindofmaterialwithexcellentcatalyticperformance,thestudyofhydrogenevolutionperformanceoftwo-dimensionalMXenesisparticularlyimportant.However,traditionaltrial-and-errormethodsaretime-consumingandresource-consuming,makingitdifficulttoscreenMXeneswithexcellentperformanceonalargescale.Therefore,weproposeacatalyticdescriptordesignmethodbasedonhigh-throughputcomputingandmachinelearningtoaccelerateandoptimizethepredictionanddiscoveryprocessofMXenes'hydrogenevolutionperformance.Inthispaper,112possiblehydrogenevolutionMXeneswerescreenedthroughalargenumberofdensityfunctionaltheorycalculations,and7performance-excellentFe-dopedMXeneswerefurtheroptimizedbyFedoping.Then,basedonmachinelearningalgorithmssuchaspolynomialregression,randomforest,andsupportvectorregression,weconstructedcatalyticdescriptorsbasedon17physicalandchemicalproperties,andselectedrandomforestasthebestpredictionmodelthroughtheerroranalysisofthetrainingsetandtestset.Finally,weusedthismodeltopredictthehydrogenevolutionperformanceofall112MXenes,anddiscovered15performance-excellentMXenesthathavenotbeenseenbefore,amongwhichhydrogenevolutionactivityishigherthanthatofNiandPdcatalysts,andmayhavepracticalapplicationvalue.

Keywords:MXenes;catalyticdescriptors;high-throughputcomputing;machinelearning;hydrogenevolution。MXenesareapromisingclassof2Dmaterialsthatexhibitexcellentcatalyticproperties.Inthisstudy,weemployedhigh-throughputcomputingandmachinelearningtodiscovernewMXeneswithoutstandinghydrogenevolutionperformance.

Firstly,wecalculatedasetofcatalyticdescriptorsfor112MXenesusingdensityfunctionaltheorycalculations.Thesedescriptorsincludethehydrogenbindingenergy,adsorptionenergy,andelectronicstructure,whichareknowntoaffectthecatalyticactivityofmaterials.

Then,wetrainedmultiplemachinelearningmodelsusingthecalculateddescriptorsandthehydrogenevolutionactivityofasubsetofMXenesasthetrainingset.Themodelswereevaluatedbasedontheirpredictionaccuracyonatestsetthatwasnotusedduringthetraining.Throughacomprehensiveerroranalysis,weidentifiedthebest-performingmodelthatcouldaccuratelypredictthehydrogenevolutionactivityofMXenes.

Finally,weutilizedtheselectedmodeltopredictthehydrogenevolutionperformanceofall112MXenes,anddiscovered15high-performanceMXeneswithgreatpotentialforpracticalapplications.ThesenewlydiscoveredMXenesexhibithigheractivitythantraditionalNiandPdcatalysts,highlightingtheimportanceofexploringalternativematerialsforsustainableenergyapplications.

Inconclusion,wedemonstratethepowerofhigh-throughputcomputingandmachinelearninginacceleratingthediscoveryofnovelmaterialswithsuperiorcatalyticperformance.Thediscoveredhigh-performanceMXenesmaypavethewayforthedevelopmentofefficientandeco-friendlyhydrogenevolutioncatalysts。Thesuccessofthisstudyshowcasesthepotentialofusingcomputationalanddata-drivenapproachesinmaterialsdiscovery.Traditionaltrial-and-errormethodsforidentifyingnewcatalystscanbelaboriousandtime-consuming,whereashigh-throughputscreeningallowsfortheefficientscreeningofvastnumbersofmaterialsinashortperiodoftime.Thisapproachcansavebothtimeandresourcesandenablethediscoveryofnovelmaterialswithdesirablepropertiesthatmayhaveotherwisebeenmissed.

Furthermore,theuseofmachinelearningalgorithmsallowedforthequickandaccuratepredictionofthecatalyticactivityofnewmaterials.Theincorporationofmachinelearningintomaterialsdiscoverycangreatlyenhancetheefficiencyoftheprocessbynarrowingdownthepoolofmaterialsthatneedtobeexperimentallytested.

Overall,thediscoveryofhigh-performanceMXenehydrogenevolutioncatalystshighlightsthepotentialofusingcomputationalanddata-drivenapproachestoacceleratethediscoveryofnovelmaterialsforsustainableenergyapplications.Asdemandsforefficientandeco-friendlyenergysourcescontinuetogrow,theuseofthesetechniqueswillonlybecomemoreprevalentinmaterialsdiscoveryanddesign。InadditiontothespecificexampleofMXenehydrogenevolutioncatalysts,therearemanyotherareasofmaterialssciencewherecomputationalanddata-drivenapproacheshavethepotentialtomakeasignificantimpact.Onesuchareaisthedesignofphotovoltaicmaterialsforuseinsolarcells.

Traditionally,thesearchfornewphotovoltaicmaterialshasreliedheavilyontrialanderrorexperimentation,whichcanbetime-consumingandexpensive.Bycontrast,computationalmethodsofferawaytoscreenlargenumbersofcandidatematerialsandpredicttheirpropertiesandperformance,therebyacceleratingthediscoveryprocess.

Onepromisingapproachtocomputationalmaterialsdesignforphotovoltaicsistheuseofmachinelearningalgorithms.Thesealgorithmscanbetrainedondatabasesofexistingmaterialsandtheirproperties,andthenusedtopredictthepropertiesofnew,untestedmaterials.Forexample,machinelearninghasbeenusedtopredicttheelectronicpropertiesofneworganicphotovoltaicmaterials,andtoguidethedesignofnewperovskitesolarcellmaterials.

Anotherareawherecomputationalmaterialsscienceismakinganimpactisinthedesignofnewmaterialsforenergystorage.Batterytechnology,inparticular,isanareawherethereisaneedfornewmaterialsthatcanofferhigherenergydensity,fastercharging,andlongerlifetimes.

Again,traditionalapproachestomaterialsdesignforbatterieshavereliedontrialanderrorexperimentation.However,theuseofcomputationalmethods,suchasdensityfunctionaltheorycalculations,canhelptopredictthepropertiesofnewmaterialsbeforetheyaresynthesizedandtested.Forexample,computationalscreeninghasbeenusedtoidentifynewmagnesium-ionbatterymaterialsthatofferhigherenergydensitythanexistingmaterials.

Inadditiontothesespecificexamples,therearemanyotherareaswherecomputationalanddata-drivenapproachesarebeingappliedtoacceleratethediscoveryanddesignofnovelmaterialsforsustainableenergyapplications.Theseincludethedesignofnewmaterialsforfuelcells,carboncapture,andstorage,andcatalysis,amongothers.

Inconclusion,therapidpaceofdevelopmentsincomputationalanddata-drivenmaterialsscienceisopeningupnewpossibilitiesforthediscoveryanddesignofnovelmaterialsforsustainableenergyapplications.Byharnessingthepowerofbigdataandmachinelearning,researchersareabletoefficientlyscreenlargenumbersofcandidatematerials,predicttheirpropertiesandperformance,andacceleratethediscoveryofnewandimprovedmaterials.Asthesetechniquescontinuetoevolveandmature,theyarelikelytoplayanincreasinglyimportantroleinthefutureofmaterialsscienceresearch。Withtheincreasingdemandforsustainableenergysourcesandtheurgentneedforreducingcarbonemissions,thedevelopmentofnovelmaterialsforenergyapplicationshasbecomeacriticalareaofresearch.Traditionalmaterialdiscoveryanddesignprocessesaretime-consuming,expensive,andofteninvolvealargedegreeoftrial-and-errorexperimentation.However,recentadvancesincomputationalmodeling,bigdataanalytics,andmachinelearningtechniqueshaveopenedupnewpossibilitiesforacceleratingthediscoveryanddesignofmaterialsforsustainableenergyapplications.

Oneofthemostpromisingapproachesforthediscoveryofnovelmaterialsishigh-throughputscreening,whichisbasedontherapidsynthesisandevaluationoflargenumbersofcandidatematerials.Bycombiningexperimentalandcomputationalmethods,researcherscanefficientlyscreenthousandsorevenmillionsofpotentialmaterials,predicttheirpropertiesandperformance,andidentifythosethathavethemostpromisingcharacteristicsforspecificenergyapplications.

Anotherpowerfultechniqueforthedesignofnovelmaterialsiscomputer-aidedmaterialsdesign(CAMD).CAMDreliesonsophisticatedalgorithmsandmodelingtechniquestosimulateandoptimizethepropertiesandbehaviorofmaterialsatthemolecularlevel.Withthehelpofthesetools,researcherscandesignmaterialswithspecificstructural,electronic,andmechanicalpropertiesthataretailoredtomeettherequirementsofdifferentenergyapplications.

Oneofthekeyadvantagesofusingbigdataandmachinelearningtechniquesinmaterialsscienceresearchisthattheyenableresearcherstoextractinsightsandpatternsfromvastamountsofdata.Bycombiningexperimentaldatawithdatafromexistingmaterialsdatabasesandliterature,researcherscanleveragethepowerofmachinelearningalgorithmstoidentifycorrelationsandtrends,discovernewmaterialswithdesiredproperties,andpredictthebehaviorofmaterialsunderdifferentconditions.

Furthermore,machinelearning-basedapproachescanalsohelpresearcherstooptimizematerialspropertiesandperformanceforspecificapplications.Forexample,byusingmachinelearningalgorithmstosimulatethebehaviorofmaterialsindifferentenvironments,researcherscanidentifytheoptimalconditionsforusingthesematerialsinenergyapplicationssuchassolarcells,batteries,andfuelcells.

Overall,theuseofbigdataandmachinelearningtechniquesinmaterialsscienceresearchshowsgreatpromiseforacceleratingthediscoveryanddesignofnovelmaterialsforsustainableenergyapplications.Asthesetechniquescontinuetoevolveandmature,theyarelikelytoplayanincreasinglyimportantroleinthefutureofmaterialsscienceresearch,helpingtodrivethedevelopmentofnewandinnovativematerialsthatcanhelpusachieveamoresustainableandcleanerenergyfuture。Thefieldofmaterialsscienceisconstantlysearchingfornewandimprovedmaterialstosolvethecriticalenergyandenvironmentalproblemsfacingsocietytoday.Theuseofbigdataandmachinelearningtechniquesinthisfieldhasshowntobeeffectiveinacceleratingthediscoveryanddesignofnewmaterialsforsustainableenergyapplications.Thetraditionalmethodofdevelopingnewmaterialsthroughexperimentationistime-consuming,labor-intensive,andexpensive.Withthehelpofbigdataandmachinelearning,researcherscananalyzevastamountsofinformationtopredictthepropertiesandbehaviorsofmaterials,whichcangreatlyreducethetimeandcostinvolvedinmaterialsdiscovery.

Oneofthemajorchallengesfacingtheenergyindustryisfindingmaterialsthatarecost-effective,efficient,andenvironmentallyfriendly.Forinstance,photovoltaiccellsmadefromsiliconarewidelyused,buttheyareexpensivetoproduce,makingsolarenergycost-prohibitiveformanyindividualsandbusinesses.However,byusingmachinelearningalgorithmstoanalyzelargedatasets,researchersmayidentifypromisingnewsemiconductingmaterialsthatcouldbemoreaffordableandefficientthantraditionalsilicon-basedphotovoltaics.Similarly,energystoragetechnologyislimitedbythematerialsusedinbatteries,whichcanbeexpensiveandhavelimitedlifetimes.Thedevelopmentofnewmaterialsusingbigdataandmachinelearningholdsthepromiseofcreatingmoreeffective,longer-lastingbatteriesthatcanhelptomeetthegrowingdemandforenergystorage.

Anotherfieldwherebigdataandmachinelearningcanhaveasignificantimpactisinthedesignofnewcatalystsforsustainableenergyapplications.Catalystsarecriticalintheproductionoffuelsandchemicals,andimprovingtheirefficiencyandperformancecanhaveasignificantimpactonreducinggreenhousegasemissions.Machinelearningtechniquescanbeusedtoanalyzethepropertiesofdifferentcatalyticmaterialsandidentifythosethataremosteffectiveatproducingfuelsandchemicalswithminimalenvironmentalimpact.

Inadditiontoacceleratingthedevelopmentofnewmaterials,bigdataandmachinelearningcanalsohelptooptimizetheuseofexistingmaterials.Forinstance,machinelearningcanbeusedtomodelthebehaviorofwindturbinesunderdifferentweatherconditionsanddeterminetheoptimalangleatwhichthebladesshouldbepositionedtomaximizeenergyoutput.Similarly,bigdatacanbeusedtomonitorandoptimizetheperformanceofsolarpanels,helpingtoimprovetheirefficiencyandextendtheirlifetime.

Inconclusion,theuseofbigdataandmachinelearningtechniquesinmaterialsscienceresearchhasthepotentialtotransformthewaywedevelopandusematerialsforsustainableenergyapplications.Thesetechniquescanenableresearcherstoanalyzevastamountsofinformation,identifypatterns,andmakepredictionsaboutthepropertiesandbehaviorsofdifferentmaterials,acceleratingthediscoveryofnewmaterialsandimprovingtheperformanceofexistingones.Asthesetechnologiescontinuetoevolve,wecanexpecttoseesignificantadvancesinourabilitytodevelopanddeploysustainableenergysolutions,helpingtocreateacleanerandmoreprosperousfutureforall。Inadditiontotheuseofadvancedmaterialsinenergysystems,arangeofotherapproachesarebeingexploredtoincreasethesustainabilityofenergyproductionandconsumption.Onepromisingareaisthedevelopmentofrenewableenergysources,suchassolarandwindpower.Thesetechnologieshavebecomeincreasinglycost-competitivewithtraditionalfossilfuels,andarerapidlybeingadoptedinmanyregionsaroundtheworld.

Anotherimportantareaoffocusisenergystorage,whichiscriticalfortheeffectiveintegrationofrenewableenergysourcesintothegrid.Advancesinbatterytechnologyhavemadeitpossibletostorelargeamountsofenergyincompact,portabledevices,whileothertechnologiessuchaspumpedhydroandcompressedairenergystoragearealsobeingexplored.Improvementsinenergystoragewillhelptoensurethatrenewableenergycanbereliablydeliveredtoconsumers,reducingdependenceonfossilfuelsandimprovingtheresilience

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論