




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.從﹣1,2,3,﹣6這四個數中任選兩數,分別記作m,n,那么點(m,n)在函數y=圖象上的概率是()A. B. C. D.2.“五一”期間,某市共接待海內外游客約567000人次,將567000用科學記數法表示為()A.567×103B.56.7×104C.5.67×105D.0.567×1063.已知矩形ABCD中,AB=3,BC=4,E為BC的中點,以點B為圓心,BA的長為半徑畫圓,交BC于點F,再以點C為圓心,CE的長為半徑畫圓,交CD于點G,則S1-S2=()A.6 B. C.12﹣π D.12﹣π4.如圖,AB與⊙O相切于點A,BO與⊙O相交于點C,點D是優弧AC上一點,∠CDA=27°,則∠B的大小是()A.27° B.34° C.36° D.54°5.下列四個圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.6.運用乘法公式計算(3﹣a)(a+3)的結果是()A.a2﹣6a+9 B.a2﹣9 C.9﹣a2 D.a2﹣3a+97.根據《天津市北大港濕地自然保護總體規劃(2017﹣2025)》,2018年將建立養殖業退出補償機制,生態補水78000000m1.將78000000用科學記數法表示應為()A.780×105B.78×106C.7.8×107D.0.78×1088.一次函數的圖象不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如圖,空心圓柱體的左視圖是()A. B. C. D.10.如圖是一次數學活動課制作的一個轉盤,盤面被等分成四個扇形區域,并分別標有數字-1,0,1,2.若轉動轉盤兩次,每次轉盤停止后記錄指針所指區域的數字(當指針恰好指在分界線上時,不記,重轉),則記錄的兩個數字都是正數的概率為()A. B. C. D.11.實數a,b在數軸上對應的點的位置如圖所示,則正確的結論是()A.a+b<0 B.a>|﹣2| C.b>π D.12.某排球隊名場上隊員的身高(單位:)是:,,,,,.現用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數變小,方差變小 B.平均數變小,方差變大C.平均數變大,方差變小 D.平均數變大,方差變大二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=_____.14.如圖,正方形ABCD中,AB=3,以B為圓心,AB長為半徑畫圓B,點P在圓B上移動,連接AP,并將AP繞點A逆時針旋轉90°至Q,連接BQ,在點P移動過程中,BQ長度的最小值為_____.15.如圖所示,某辦公大樓正前力有一根高度是15米的旗桿ED,從辦公樓頂點A測得族桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底端C的距離DC是20米,梯坎坡長BC是13米,梯坎坡度i=1:2.4,則大樓AB的高度的為_____米.16.分解因式______.17.已知關于x的方程x2+kx﹣3=0的一個根是x=﹣1,則另一根為_____.18.如圖,與中,,,,,AD的長為________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,某人站在樓頂觀測對面的筆直的旗桿AB,已知觀測點C到旗桿的距離CE=8m,測得旗桿的頂部A的仰角∠ECA=30°,旗桿底部B的俯角∠ECB=45°,求旗桿AB的髙.20.(6分)如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經過點A、C、B的拋物線的一部分C1與經過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2:(<0)的頂點.(1)求A、B兩點的坐標;(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當△BDM為直角三角形時,求的值.21.(6分)目前節能燈在城市已基本普及,今年某省面向農村地區推廣,為響應號召,某商場用3300元購進節能燈100只,這兩種節能燈的進價、售價如表:進價元只售價元只甲種節能燈3040乙種節能燈3550求甲、乙兩種節能燈各進多少只?全部售完100只節能燈后,該商場獲利多少元?22.(8分)已知:如圖,點A,F,C,D在同一直線上,AF=DC,AB∥DE,AB=DE,連接BC,BF,CE.求證:四邊形BCEF是平行四邊形.23.(8分)如圖,P是半圓弧上一動點,連接PA、PB,過圓心O作交PA于點C,連接已知,設O,C兩點間的距離為xcm,B,C兩點間的距離為ycm.小東根據學習函數的經驗,對函數y隨自變量x的變化而變化的規律進行探究.下面是小東的探究過程,請補充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012336說明:補全表格時相關數據保留一位小數建立直角坐標系,描出以補全后的表中各對應值為坐標的點,畫出該函數的圖象;結合畫出的函數圖象,解決問題:直接寫出周長C的取值范圍是______.24.(10分)如圖,矩形ABCD中,CE⊥BD于E,CF平分∠DCE與DB交于點F.求證:BF=BC;若AB=4cm,AD=3cm,求CF的長.25.(10分)△ABC內接于⊙O,AC為⊙O的直徑,∠A=60°,點D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF=2OE,延長BD到點M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.26.(12分)我市某中學舉行“中國夢?校園好聲音”歌手大賽,高、初中部根據初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績如圖所示.根據圖示填寫下表;
平均數(分)
中位數(分)
眾數(分)
初中部
85
高中部
85
100
(2)結合兩隊成績的平均數和中位數,分析哪個隊的決賽成績較好;計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩定.27.(12分)如圖,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一點,BD=8,DE⊥AB,垂足為E,求線段DE的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與點(m,n)恰好在反比例函數y=圖象上的情況,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:∵共有12種等可能的結果,點(m,n)恰好在反比例函數y=圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數y=圖象上的概率是:.故選B.【點睛】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數與總情況數之比.2、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是非負數;當原數的絕對值<1時,n是負數.【詳解】567000=5.67×105,【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.3、D【解析】
根據題意可得到CE=2,然后根據S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【詳解】解:∵BC=4,E為BC的中點,∴CE=2,∴S1﹣S2=3×4﹣,故選D.【點睛】此題考查扇形面積的計算,矩形的性質及面積的計算.4、C【解析】
由切線的性質可知∠OAB=90°,由圓周角定理可知∠BOA=54°,根據直角三角形兩銳角互余可知∠B=36°.【詳解】解:∵AB與⊙O相切于點A,
∴OA⊥BA.
∴∠OAB=90°.
∵∠CDA=27°,
∴∠BOA=54°.
∴∠B=90°-54°=36°.故選C.考點:切線的性質.5、D【解析】
根據軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,不是中心對稱圖形;C、是軸對稱圖形,不是中心對稱圖形;D、不是軸對稱圖形,是中心對稱圖形.故選D.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.6、C【解析】
根據平方差公式計算可得.【詳解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故選C.【點睛】本題主要考查平方差公式,解題的關鍵是應用平方差公式計算時,應注意以下幾個問題:①左邊是兩個二項式相乘,并且這兩個二項式中有一項完全相同,另一項互為相反數;②右邊是相同項的平方減去相反項的平方.7、C【解析】
科學記數法記數時,主要是準確把握標準形式a×10n即可.【詳解】解:78000000=7.8×107.故選C.【點睛】科學記數法的形式是a×10n,其中1≤|a|<10,n是整數,若這個數是大于10的數,則n比這個數的整數位數少1.8、B【解析】
由二次函數,可得函數圖像經過一、三、四象限,所以不經過第二象限【詳解】解:∵,∴函數圖象一定經過一、三象限;又∵,函數與y軸交于y軸負半軸,
∴函數經過一、三、四象限,不經過第二象限故選B【點睛】此題考查一次函數的性質,要熟記一次函數的k、b對函數圖象位置的影響9、C【解析】
根據從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看是三個矩形,中間矩形的左右兩邊是虛線,故選C.【點睛】本題考查了簡單幾何體的三視圖,從左邊看得到的圖形是左視圖.10、C【解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,總共有16種結果,兩個數都為正數的結果有4種,所以兩個數都為正數的概率為,故選C.考點:用列表法(或樹形圖法)求概率.11、D【解析】
根據數軸上點的位置,可得a,b,根據有理數的運算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點睛】本題考查了實數與數軸,利用有理數的運算是解題關鍵.12、A【解析】分析:根據平均數的計算公式進行計算即可,根據方差公式先分別計算出甲和乙的方差,再根據方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數為==188,方差為S2==;換人后6名隊員身高的平均數為==187,方差為S2==∵188>187,>,∴平均數變小,方差變小,故選:A.點睛:本題考查了平均數與方差的定義:一般地設n個數據,x1,x2,…xn的平均數為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數據的波動大小,方差越大,波動性越大,反之也成立.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、6°【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中線,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因為∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.14、3﹣1【解析】
通過畫圖發現,點Q的運動路線為以D為圓心,以1為半徑的圓,可知:當Q在對角線BD上時,BQ最小,先證明△PAB≌△QAD,則QD=PB=1,再利用勾股定理求對角線BD的長,則得出BQ的長.【詳解】如圖,當Q在對角線BD上時,BQ最小.連接BP,由旋轉得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.∵四邊形ABCD為正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ長度的最小值為(3﹣1).故答案為3﹣1.【點睛】本題是圓的綜合題.考查了正方形的性質、旋轉的性質和最小值問題,尋找點Q的運動軌跡是本題的關鍵,通過證明兩三角形全等求出BQ長度的最小值最小值.15、42【解析】
延長AB交DC于H,作EG⊥AB于G,則GH=DE=15米,EG=DH,設BH=x米,則CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的長度,證明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大樓AB的高度.【詳解】延長AB交DC于H,作EG⊥AB于G,如圖所示:
則GH=DE=15米,EG=DH,
∵梯坎坡度i=1:2.4,
∴BH:CH=1:2.4,
設BH=x米,則CH=2.4x米,
在Rt△BCH中,BC=13米,
由勾股定理得:x2+(2.4x)2=132,
解得:x=5,
∴BH=5米,CH=12米,
∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),
∵∠α=45°,
∴∠EAG=90°-45°=45°,
∴△AEG是等腰直角三角形,
∴AG=EG=32(米),
∴AB=AG+BG=32+10=42(米);
故答案為42【點睛】本題考查了解直角三角形的應用-坡度、俯角問題;通過作輔助線運用勾股定理求出BH,得出EG是解決問題的關鍵.16、(x+y+z)(x﹣y﹣z).【解析】
當被分解的式子是四項時,應考慮運用分組分解法進行分解.本題后三項可以為一組組成完全平方式,再用平方差公式即可.【詳解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z).故答案為(x+y+z)(x-y-z).【點睛】本題考查了用分組分解法進行因式分解.難點是采用兩兩分組還是三一分組.本題后三項可組成完全平方公式,可把后三項分為一組.17、1【解析】
設另一根為x2,根據一元二次方程根與系數的關系得出-1?x2=-1,即可求出答案.【詳解】設方程的另一個根為x2,則-1×x2=-1,解得:x2=1,故答案為1.【點睛】本題考查了一元二次方程根與系數的關系:如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,那么x1+x2=-,x1x2=.18、【解析】
先證明△ABC∽△ADB,然后根據相似三角形的判定與性質列式求解即可.【詳解】∵,,∴△ABC∽△ADB,∴,∵,,∴,∴AD=.故答案為:.【點睛】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.靈活運用相似三角形的性質進行幾何計算.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(8+8)m.【解析】
利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.【詳解】在Rt△EBC中,有BE=EC×tan45°=8m,在Rt△AEC中,有AE=EC×tan30°=8m,∴AB=8+8(m).【點睛】本題考查了解直角三角形的應用-俯角、仰角問題,要求學生能借助其關系構造直角三角形并解直角三角形.20、(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為(3)或時,△BDM為直角三角形.【解析】
(1)在中令y=0,即可得到A、B兩點的坐標.(2)先用待定系數法得到拋物線C1的解析式,由S△PBC=S△POC+S△BOP–S△BOC得到△PBC面積的表達式,根據二次函數最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90°時;②∠BDM=90°時,討論即可求得m的值.【詳解】解:(1)令y=0,則,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵設拋物線C1的表達式為(),把C(0,)代入可得,.∴C1的表達式為:,即.設P(p,),∴S△PBC=S△POC+S△BOP–S△BOC=.∵<0,∴當時,S△PBC最大值為.(3)由C2可知:B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD<90°,∴討論∠BMD=90°和∠BDM=90°兩種情況:當∠BMD=90°時,BM2+DM2=BD2,即+=,解得:,(舍去).當∠BDM=90°時,BD2+DM2=BM2,即+=,解得:,(舍去).綜上所述,或時,△BDM為直角三角形.21、甲、乙兩種節能燈分別購進40、60只;商場獲利1300元.【解析】
(1)利用節能燈數量和所用的價錢建立方程組即可;(2)每種燈的數量乘以每只燈的利潤,最后求出之和即可.【詳解】(1)設商場購進甲種節能燈x只,購進乙種節能燈y只,根據題意,得,解這個方程組,得
,答:甲、乙兩種節能燈分別購進40、60只.(2)商場獲利元,答:商場獲利1300元.【點睛】此題是二元一次方程組的應用,主要考查了列方程組解應用題的步驟和方法,利潤問題,解本題的關鍵是求出兩種節能燈的數量.22、證明見解析【解析】
首先證明△ABC≌△DEF(ASA),進而得出BC=EF,BC∥EF,進而得出答案.【詳解】∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四邊形BCEF是平行四邊形.【點睛】本題考查了全等三角形的判定與性質與平行四邊形的判定,解題的關鍵是熟練的掌握全等三角形的判定與性質與平行四邊形的判定.23、(1)(2)詳見解析;(3).【解析】
(1)動手操作,細心測量即可求解;(2)利用描點、連線畫出函數圖象即可;(3)根據觀察找到函數值的取值范圍,即可求得△OBC周長C的取值范圍.【詳解】經過測量,時,y值為根據題意,畫出函數圖象如下圖:根據圖象,可以發現,y的取值范圍為:,,故答案為.【點睛】本題通過學生測量、繪制函數,考查了學生的動手能力,由觀察函數圖象,確定函數的最值,讓學生進一步了解函數的意義.24、(1)見解析,(2)CF=cm.【解析】
(1)要求證:BF=BC只要證明∠CFB=∠FCB就可以,從而轉化為證明∠BCE=∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根據三角形的面積等于BD?CE=BC?DC,就可以求出CE的長.要求CF的長,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根據勾股定理就可以求出,由此解決問題.【詳解】證明:(1)∵四邊形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四邊形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD=.又∵BD?CE=BC?DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.【點睛】本題考查矩形的判定與性質,等腰三角形的判定定理,等角對等邊,以及勾股定理,三角形面積計算公式的運用,靈活運用已知,理清思路,解決問題.25、(1)證明見解析;(2)證明見解析;(3)CE=.【解析】
(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB,證明△OCE≌△OBE,則∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,則∠OCE=∠ABD.(3)過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,則△ADB≌△MQD,四邊形MQOG為平行四邊形,∠DMF=∠EDN,再結合特殊角度和已知的線段長度求出CE的長度即可.【詳解】解:(1)如圖1所示,連接OB,∵∠A=60°,OA=OB,∴△AOB為等邊三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE為等邊三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如圖2所示,由(1)可知△ADB≌△OB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全生產多維管理考核試題及答案
- 中級審計師考試知識體系試題及答案
- 2025年護師健康評估試題及答案
- 不斷提高的高級會計試題及答案
- 2025年建造師備考過程中的心理支持及試題及答案
- 應試技巧2025中級會計考試試題及答案
- 2025年初中學業水平考試地理模擬卷及答案:地理環境演變地理信息系統題
- 準確記錄和報告技能試題及答案
- 2025年醫保信息化建設應用系統集成試題庫及答案試卷
- 2025年計算機二級MSOffice高級應用考試真題卷:Excel數據導入與導出試題
- WK-arbitration培訓-中山大學法學院課件
- 水資源稅納稅申報表附表
- 裝修施工安全保證書
- 敏感性皮膚及其修復策略課件
- 矛盾論實踐論導讀課件1
- ABAQUS官方培訓資料PPTlecture5-contact
- 任務1-安裝CPU、CPU風扇及內存
- 安全事故應急響應程序流程圖
- 勞動力、機械設備、主要材料進場計劃范文
- 07FK02 防空地下室通風設備安裝
- 家用青飼料切割機說明書-畢業設計
評論
0/150
提交評論