




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
McGraw-Hill/Irwin?2003TheMcGraw-HillCompanies,Inc.,AllRightsReserved.PartOne
INTRODUCTIONTO
BUSINESSRESEARCHChapterOne
RESEARCHINBUSINESSWhatisBusinessResearch?AsystematicInquirywhoseobjectiveistoprovideinformationtosolvemanagerialproblems.WhyStudyResearch?Researchprovidesyouwiththeknowledgeandskillsneededforthefast-paceddecision-makingenvironmentWhyManagersneedBetterInformationGlobalanddomesticcompetitionismorevigorousOrganizationsareincreasinglypracticingdatamining
anddatawarehousingTheValueofAcquiringResearchSkillsTogathermoreinformationbeforeselectingacourseofactionTodoahigh-levelresearchstudyTounderstandresearchdesignToevaluateandresolveacurrentmanagementdilemmaToestablishacareerasaresearchspecialistTypesofStudiesUsedtodoResearchReportingDescriptiveExplanatoryPredictiveDifferentStylesofResearchAppliedResearchPureResearch/BasicResearchWhatisGoodResearch?FollowingthestandardsofthescientificmethodPurposeclearlydefinedResearchprocessdetailedResearchdesignthoroughlyplannedLimitationsfranklyrevealedHighethicalstandardsappliedWhatisGoodResearch?(cont.)Followingthestandardsofthescientificmethod(cont.)Adequateanalysisfordecision-maker’sneedsFindingspresentedunambiguouslyConclusionsjustifiedResearcher’sexperiencereflectedTheManager-ResearcherRelationshipManager’sobligationsSpecifyproblemsProvideadequatebackgroundinformationAccesstocompanyinformationgatekeepersResearcher’sobligationsDevelopacreativeresearchdesignProvideanswerstoimportantbusinessquestionsManager-ResearcherConflictsManagement’slimitedexposuretoresearchManagerseesresearcherasthreattopersonalstatusResearcherhastoconsidercorporatecultureandpoliticalsituationsResearcher’sisolationfrommanagersWhenResearchShouldbeAvoidedWheninformationcannotbeappliedtoacriticalmanagerialdecisionWhenmanagerialdecisioninvolveslittleriskWhenmanagementhasinsufficientresourcestoconductastudyWhenthecostofthestudyoutweighsthelevelofriskofthedecisionMcGraw-Hill/Irwin?2003TheMcGraw-HillCompanies,Inc.,AllRightsReserved.PartOne
INTRODUCTIONTO
BUSINESSRESEARCHChapterTwo
APPLYINGSCIENTIFICTHINKINGTO
MANAGEMENTPROBLEMSSourcesofKnowledgeEmpiricistsattempttodescribe,explain,andmakepredictionsthroughobservationRationalistsbelieveallknowledgecanbededucedfromknownlawsorbasictruthsofnatureAuthoritiesserveasimportantsourcesofknowledge,butshouldbejudgedonintegrityandwillingnesstopresentabalancedcaseTheEssentialTenetsofScienceDirectobservationofphenomenaClearlydefinedvariables,methods,andproceduresEmpiricallytestablehypothesesAbilitytoruleoutrivalhypothesesStatisticaljustificationofconclusionsSelf-correctingprocessWaystoCommunicateExpositiondescriptivestatementsthatmerelystateanddonotgivereasonArgumentallowsustoexplain,interpret,defend,challenge,andexploremeaningImportantArgumentsinResearchDeductionisaformofinferencethatpurportstobeconclusiveInductiondrawsconclusionsfromoneormoreparticularfacts TheBuildingBlocksofTheoryConceptsConstructsDefinitionsVariablesPropositionsandHypothesesTheoriesModelsUnderstandingConceptsAconceptisabundleofmeaningsorcharacteristicsassociatedwithcertainevents,objects,conditions,situations,andbehaviorsConceptshavebeendevelopedovertimethroughsharedusageUnderstandingConceptsThesuccessofresearchhingeson:howclearlyweconceptualizehowwellothersunderstandtheconceptsweuseWhatisaConstruct?Aconstructisanimageorideaspecificallyinventedforagivenresearchand/ortheory-buildingpurpose.TypesofVariablesIndependentDependentModeratingExtraneousInterveningTheRoleoftheHypothesisGuidesthedirectionofthestudyIdentifiesfactsthatarerelevantSuggestswhichformofresearchdesignisappropriateProvidesaframeworkfororganizingtheconclusionsthatresultWhatisaGoodHypothesis?Agoodhypothesisshouldfulfillthreeconditions:MustbeadequateforitspurposeMustbetestableMustbebetterthanitsrivalsTheValueofaTheoryNarrowstherangeoffactsweneedtostudySuggestswhichresearchapproacheswillyieldthegreatestmeaningSuggestsadataclassificationsystemSummarizeswhatisknownaboutanobjectofstudyPredictsfurtherfactsthatshouldbefoundMcGraw-Hill/Irwin?2003TheMcGraw-HillCompanies,Inc.,AllRightsReserved.PartOne
INTRODUCTIONTO
BUSINESSRESEARCHChapterThree
THERESEARCHPROCESSTheManagement-Research
QuestionHierarchyManagementDilemmaMeasurementQuestionsInvestigativeQuestionsResearchQuestionsManagementQuestionsManagementDecision123456WorkingwiththeHierarchy
ManagementDilemmaThesymptomofanactualproblemNotdifficulttoidentifyadilemma,howeverchoosingonetofocusonmaybedifficult
WorkingwiththeHierarchy
ManagementQuestionCategoriesChoiceofpurposesorobjectiveGenerationandevaluationofsolutionsTroubleshootingorcontrolsituationWorkingwiththeHierarchy
FinetunetheresearchquestionExamineconceptsandconstructsBreakresearchquestionsintospecificsecond-and-third-levelquestionsVerifyhypotheseswithqualitytestsDeterminewhatevidenceanswersthevariousquestionsandhypothesisSetthescopeofyourstudyWorkingwiththeHierarchy
InvestigativeQuestionsQuestionstheresearchermustanswertosatisfactorilyarriveataconclusionabouttheresearchquestionWorkingwiththeHierarchyMeasurementQuestionsThequestionsweactuallyaskorextractfromrespondentsOtherProcessesintheHierarchyExplorationRecentdevelopmentsPredictionsbyinformedfiguresabouttheprospectsofthetechnologyIdentificationofthoseinvolvedintheareaAccountsofsuccessfulventuresandfailuresbyothersinthefieldResearchProcessProblemsTheFavoredTechniqueSyndromeCompanyDatabaseStrip-MiningUnresearchableQuestionsIll-DefinedManagementProblemsPoliticallyMotivatedResearchDesigningtheStudySelectaresearchdesignfromthelargevarietyofmethods,techniques,procedures,protocols,andsamplingplansResourceAllocation&BudgetsGuidestoplanabudgetProjectplanningDatagatheringAnalysis,interpretation,andreportingTypesofbudgetingRule-of-thumbDepartmentalorfunctionalareaTaskEvaluationMethodsExPostFactoEvaluationPriorEvaluationOptionAnalysisDecisionTheoryContentsofaResearchProposalStatementoftheresearchquestionBriefdescriptionofresearchmethodologyPilotTestingDatacollectionDatapreparationDataanalysisandinterpretationResearchreportingDataCollectionCharacterizedbyabstractnessverifiabilityelusivenessclosenesstothephenomenonTypesSecondarydataPrimarydataFinalStepsinResearchDataanalysisReportingtheresultsExecutivesummaryOverviewoftheresearchImplementationstrategiesfortherecommendationsTechnicalappendixMcGraw-Hill/Irwin?2003TheMcGraw-HillCompanies,Inc.,AllRightsReserved.PartOne
INTRODUCTIONTO
BUSINESSRESEARCHChapterFour
THERESEARCHPROPOSALPurposeoftheResearchProposalTopresentthequestiontoberesearchedanditsimportanceTodiscusstheresearcheffortsofotherswhohaveworkedonrelatedquestionsTosuggestthedatanecessaryforsolvingthequestionTheResearchSponsorAllresearchhasasponsorinoneformoranother:Inacorporatesetting,managementsponsorsresearchInanacademicenvironment,thestudentisresponsibletotheclassinstructorWhataretheBenefitsoftheProposaltoaResearcher?Allowstheresearchertoplanandreviewtheproject’sstepsServesasaguidethroughouttheinvestigationForcestimeandbudgetestimatesTypesofResearchProposalsInternalExternal
ProposalComplexity3levelsofcomplexity:Theexploratorystudy
isusedforthemostsimpleproposalsThesmall-scalestudy
ismorecomplexandcommoninbusinessThelarge-scaleprofessionalstudy
isthemostcomplex,costingmillionsofdollarsHowtoStructuretheResearchProposal?CreateproposalmodulesPuttogethervariousmodulestotailoryourproposaltotheintendedaudienceModulesinaResearchProposalExecutiveSummaryProblemStatementResearchObjectivesLiteratureReviewImportanceoftheStudyResearchDesignDataAnalysisNatureandFormofResultsQualificationsofResearcherBudgetScheduleFacilitiesandSpecialResourcesProjectManagementBibliographyAppendicesWhattoincludeintheAppendices?Aglossaryofconcepts,constructs,anddefinitionsSamplesofthemeasurementinstrumentOthermaterialsthatreinforcethebodyoftheproposalEvaluatingtheResearchProposalProposalmustbeneatlywritteninappropriatewritingstyleMajortopicsshouldbeeasilyfoundandlogicallyorganizedProposalmustmeetspecificguidelinessetbythesponsorTechnicalwritingstylemustbeclearlyunderstoodandexplainedMcGraw-Hill/Irwin?2003TheMcGraw-HillCompanies,Inc.,AllRightsReserved.PartOne
INTRODUCTIONTO
BUSINESSRESEARCHChapterFive
ETHICSIN
BUSINESSRESEARCHWhatareResearchEthics?EthicsarenormsorstandardsofbehaviorthatguidemoralchoicesaboutourbehaviorandourrelationshipswithothersThegoalistoensurethatnooneisharmedorsuffersadverseconsequencesfromresearchactivitiesEthicalTreatmentofParticipantsBegindatacollectionbyexplainingtotheparticipantthebenefitsexpectedfromtheresearchExplaintotheparticipantsthattheirrightsandwell-beingwillbeadequatelyprotected,andsayhowthiswillbedoneBecertainthatinterviewersobtaintheinformedconsentoftheparticipantDeceptionTheparticipantistoldonlypartofthetruthorwhenthetruthisfullycompromisedTopreventbiasingtheparticipantsbeforethesurveyorexperimentToprotecttheconfidentialityofathirdpartyIssuesRelatedtoProtectingParticipantsInformedconsentDebriefingRighttoPrivacy/ConfidentialityDataCollectioninCyberspaceEthicalIssuesrelatedtotheClientSponsornon-disclosurePurposenon-disclosureFindingsnon-disclosureRighttoqualityresearchEthicsRelatedtoSponsorSometimesresearcherswillbeaskedbysponsorstoparticipateinunethicalbehavior.Toavoidcoercionbysponsortheresearchershould:EducatesponsortothepurposeofresearchExplainresearcher’sroleExplainhowdistortionofthetruthleadstofutureproblemsIfnecessary,terminaterelationshipwithsponsorEthicalIssuesrelatedto
ResearchersandTeamMembersSafetyEthicalbehaviorofassistantsProtectionofanonymityTheDesignofResearchPart2DonaldCooperPamelaSchindlerChapter6BusinessResearchMethodsChapter6DesignStrategiesWhatisResearchDesign?AplanforselectingthesourcesandtypesofinformationusedtoanswerresearchquestionsAframeworkforspecifyingtherelationshipsamongthestudyvariablesAblueprintthatoutlineseachprocedurefromthehypothesistotheanalysisSlide6-1ClassificationsofDesignsExploratorystudyisusuallytodevelophypothesesorquestionsforfurtherresearchFormalstudyistotestthehypothesesoranswertheresearchquestionsposedSlide6-2MethodsofDataCollectionMonitoring,whichincludesobservational
studiesInterrogation/communicationstudySlide6-3PowertoProduceEffects
Slide6-4Inanexperiment,theresearcherattemptstocontroland/ormanipulatethevariablesinthestudyInanexpostfactodesign,theresearcherhasnocontroloverthevariables;theycanonlyreportwhathashappenedPurposeoftheStudyDescriptivetriestoexplainrelationshipsamongvariables
CausalstudyishowonevariableproduceschangesinanotherSlide6-5TheTimeDimensionCross-sectionalstudiesarecarriedoutonceandrepresentasnapshotofonepointintimeLongitudinalstudiesarerepeatedoveranextendedperiodSlide6-6TheTopicalScopeStatisticalstudiesattempttocaptureapopulation’scharacteristicsbymakinginferencesfromasample’scharacteristicsCasestudiesplacemoreemphasisonafullcontextualanalysisoffewereventsorconditionsandtheirinterrelationsSlide6-7TheResearchEnvironmentFieldconditionsLaboratoryconditionsSimulationsSlide6-8ASubjects’PerceptionsUsefulnessofadesignmaybereducedwhenpeopleinthestudyperceivethatresearchisbeingconductedSubjects’perceptionsinfluencetheoutcomesoftheresearchSlide6-9WhydoExploratoryStudies?ExplorationisparticularlyusefulwhenresearcherslackaclearideaoftheproblemsSlide6-10DataCollectionTechniquesQualitativetechniquesSecondarydataFocusgroups
Two-stagedesignSlide6-11Causation
TheessentialelementofcausationisA“produces〞B orA“forces〞BtooccurSlide6-12CausalStudyRelationshipsSymmetricalReciprocalAsymmetricalSlide6-13AsymmetricalRelationshipsStimulus-ResponseProperty-DispositionDisposition-BehaviorProperty-BehaviorSlide6-14AchievingtheIdealExperimentalDesign
Control RandomAssignment Matching Randomization ManipulationandcontrolofvariablesSlide6-15DonaldCooperPamelaSchindlerChapter7BusinessResearchMethodsChapter7SamplingDesignSelectionofElements
Population PopulationElementSampling
CensusSlide7-1WhatisaGoodSample?Accurate:absenceofbiasPreciseestimate:samplingerrorSlide7-2TypesofSamplingDesigns
ProbabilityNonprobabilitySlide7-3StepsinSamplingDesignWhatistherelevantpopulation?Whataretheparametersofinterest?Whatisthesamplingframe?Whatisthetypeofsample?Whatsizesampleisneeded?Howmuchwillitcost?Slide7-4ConceptstohelpunderstandProbabilitySampling
Standarderror ConfidenceintervalCentrallimittheoremSlide7-5ProbabilitySamplingDesigns
SimplerandomSystematicStratifiedProportionateDisproportionateClusterDoubleSlide7-6DesigningClusterSamplesHowhomogeneousaretheclusters?Shallweseekequalorunequalclusters?Howlargeaclustershallwetake?Shallweuseasingle-stageormultistagecluster?Howlargeasampleisneeded?Slide7-7Slide7-8NonprobabilitySamplingReasonstouseProceduresatisfactorilymeetsthesamplingobjectivesLowerCostLimitedTimeNotasmuchhumanerrorasselectingacompletelyrandomsampleTotallistpopulationnotavailableNonprobabilitySampling
ConvenienceSamplingPurposiveSamplingJudgmentSamplingQuotaSamplingSnowballSamplingSlide7-9DonaldCooperPamelaSchindlerChapter8BusinessResearchMethodsChapter8MeasurementMeasurementSelectingobservableempiricaleventsUsingnumbersorsymbolstorepresentaspectsoftheeventsApplyingamappingruletoconnecttheobservationtothesymbolSlide8-1WhatisMeasured?
Objects: Thingsofordinaryexperience Somethingsnotconcrete Properties:characteristicsofobjectsSlide8-2CharacteristicsofDataClassificationOrderDistance(intervalbetweennumbers)Originofnumberseries7-4Slide8-3DataTypes
Order Interval OriginNominal none
none noneOrdinal yes unequal noneInterval yes equalor none unequalRatio yes equal zeroSlide8-4SourcesofMeasurementDifferencesRespondentSituationalfactorsMeasurerorresearcherDatacollectioninstrumentSlide8-5Validity
ContentValidityCriterion-RelatedValidityPredictiveConcurrentConstructValiditySlide8-6Reliability
StabilityTest-retestEquivalenceParallelformsInternalConsistencySplit-halfKR20Cronbach’salphaSlide8-7PracticalityEconomyConvenienceInterpretability7-9Slide8-8DonaldCooperPamelaSchindlerChapter9BusinessResearchMethodsChapter9MeasurementScalesWhatisScaling?AssigningnumberstoindicantsofthepropertiesofobjectsSlide9-1TypesofResponseScalesSlide9-2RatingScalesRankingScalesCategorizationTypesofRatingScalesSimplecategoryMultiplechoice,singleresponseMultiplechoice,multipleresponseLikertscaleSemanticdifferentialNumericalMultipleratingFixedsumStapelGraphicratingSlide9-3RatingScaleErrorstoAvoidLeniency NegativeLeniency PositiveLeniencyCentralTendencyHaloEffectSlide9-4TypesofRankingScalesPaired-comparisonForcedRankingComparativeSlide9-5DimensionsofaScaleUnidimensionalMultidimensionalSlide9-6ScaleDesignTechniquesArbitraryConsensusItemAnalysisCumulativeFactorSlide9-7DonaldCooperPamelaSchindlerChapter10BusinessResearchMethodsChapter10SourcesandCollectionofDataExploratoryResearchSlide10-1ExpandunderstandingofmanagementdilemmaExpandunderstandingofresearchquestionIdentifyplausibleinvestigativequestionsLevelsofInformationSlide10-2PrimarysourcesSecondarysourcesTertiarysourcesTypesofInformationSourcesIndexesandBibliographiesDictionariesEncyclopediasHandbooksDirectoriesSlide10-3SecondarySourcesbyTypeIndexesandBibliographiestofindorlocatebooksorarticlestofindauthors,topicstouseinonlinesearchesSlide10-4Dictionariestoidentifyjargonofanindustry--usedforonlinesearchestoidentifybell-weathereventsinanindustrytoidentifyknowledgeablepeopletointerviewtoidentifyorganizationsofinfluenceSecondarySourcesbyTypeSlide10-5EncyclopediasToidentifyhistoricalorbackgroundinformationTofindcriticaldateswithinanindustryTofindeventsofsignificancetotheindustry,companySecondarySourcesbyTypeSlide10-6HandbooksTofindfactsrelevanttotopicToidentifyinfluentialindividualsthroughsourcecitationsSecondarySourcesbyTypeSlide10-7DirectoriesToidentifyinfluentialpeopleandorganizationstofindaddresses,e-mail,othercontactinfoonthesepeopleandorganizationsSecondarySourcesbyTypeSlide10-8EvaluatingInformationSourcesPurposeScopeAuthorityAudienceFormatSlide10-9EvaluatingSourcesPurposewhattheauthorisattemptingtoaccomplishidentifyhiddenagenda(s)identifydirectionofbiasSeekbothbiasedandunbiasedsourcesSlide10-10EvaluatingSourcesScopeIdentifydatesofinclusionandexclusionIdentifysubjectsofinclusionandexclusionSlide10-11EvaluatingSourcesAuthorityIdentifybackgroundofauthorCredentials:educational,professionalExperience:duration,setting,levelIdentifythelevelofscholarshipincontentfootnotes,endnotesSlide10-12EvaluatingSourcesAudienceIdentifyknowledgelevelandbackgroundIdentifyorientationandbiasSeekbiasedandunbiasedsourcesSlide10-13EvaluatingSourcesFormatOrderofcontentVersatilityofuseIndexed?Searchable?Downloadable?Slide10-14SearchingDatabasesSelectanappropriatedatabaseABI/InformBusinessInfoSuiteBusinessSourceDowJonesInteractiveNexis-LexisUniverseSlide10-15SearchingDatabasesSelectanappropriatedatabaseConstructasearchquerySlide10-16SearchingDatabasesConstructasearchqueryBooleanOperatorsOR-forplurals,synonymsspellingvariationswomanORwomenAND-narrowsyoursearchadvertisingANDbibliographyNOT/ANDNOT-eliminatestermsawardNOTtrophyADJ-orderkeytermswithinyoursearchassistedADJlivingSlide10-17SearchingDatabasesConstructasearchqueryBooleanOperators?or*-totruncateatermnur*fornurse,nursing“X〞forphrasesearching“advertisingcampaigns〞LimitersdatessourcetypelanguageSlide10-18SearchingDatabasesSelectanappropriatedatabaseConstructasearchqueryReviewandevaluatesearchresultsRelevancyQuantityTimelinessSlide10-19SearchingDatabasesModifythesearchqueryCheckbibliographynewkeywords,otherauthorsLinkdirectlyAdaptoriginalsearchqueryCreatenewsearchquerywithnewkeywordsSearchforotherworksbysameauthor(s)Slide10-20SearchingDatabasesModifythesearchqueryDocumentfindingsPrintordownloadsearchfindingsDownloadfull-textsourcePrintfull-textsourceSlide10-21SearchingDatabasesModifythesearchqueryDocumentfindingsRetrieveorrequestarticlesSearchonlinecatalogInterlibraryloanInterlibrarydeliverySlide10-22WebSearchesDefineyourquestionSelectSearchEngineorDirectoryDannySullivan’sSearchEngineWatchGregNotess〞SearchEngineShowdownSlide10-23WebSearchesDetermineSearchOptionsandProtocolConstructsearchqueryReviewsearchresultsSlide10-24WebSearchesModifysearchqueryandsearchagainSearchusingadifferentsearchengineDocumentyourfindingssearchfindingsfulltextsourcesSupplementwebresultsfromothersourcesSlide10-25SpecificWebSearchesKnown-ItemWhoWhereWhatSlide10-26GovernmentSourcesGovernmentorganizationsLaws,regulations,courtdecisionsGovernmentstatisticsSlide10-27MiningInternalSourcesDatawarehouseDatamartDataminingPatterndiscoveryPredictingtrendsandbehaviorsSlide10-28DataMiningTechniques
DataVisualizationDimensionsMeasurementsHierarchiesClusteringNeuralNetworksTreeModelsClassificationSlide10-29DataMiningTechniques(cont.)
Estimation Association Market-BasketAnalysisSequenceBasedAnalysisFuzzyLogicGeneticAlgorithmsFractal-BasedTransformationSlide10-30DataMiningProcessSampleExploreModifyModelAssessSlide10-31DonaldCooperPamelaSchindlerChapter11BusinessResearchMethodsChapter11SurveyMethods:CommunicatingwithRespondentsCommunicationApproachImpactstheResearchProcessCreationandselectionofmeasurementquestionsSamplingissues,drivecontactandcallbackproceduresInstrumentdesign,whichincorporatesattemptstoreduceerrorandcreaterespondent-screeningproceduresDatacollectionprocesses,whichcreatetheneedforfollow-upproceduresandpossibleinterviewertrainingSlide11-1PersonalInterviewRequirementsforsuccessAvailabilityoftheneededinformationfromtherespondentAnunderstandingbytherespondentofhisorherroleAdequatemotivationbytherespondenttocooperateSlide11-2PersonalInterviewToIncreaseRespondent’sReceptivenesstheymustbelievetheexperiencewillbepleasantandsatisfyingthinkansweringthesurveyisanimportantandworthwhileuseoftheirtimehaveanymentalreservationssatisfiedSlide11-3TheInterviewIntroductionEstablishagoodrelationshipGatherthedataProbingRecordtheinterviewSlide11-4ProbingStylesAbriefassertionofunderstandingandinterestAnexpectantpauseRepeatingthequestionRepeatingtherespondent’sreplyAneutralquestionorcommentQuestionclarificationSlide11-5InterviewProblems
NonresponseerrorResponseerrorInterviewererrorCostSlide11-6TelephoneInterviewTypesComputer-assistedtelephoneinterviewingComputer-administeredtelephonesurveyProblemsNoncontactrateRefusalrateSlide11-7Self-AdministeredSurveysTypesMailsurveyComputer-delivered InterceptstudiesDisadvantagesLargenonresponseerrorCannotobtaindetailedorlargeamountsofinformationSlide11-8ConcurrentTechniquestoImproveMailResponseReduceLengthSurveySponsorshipReturnEnvelopesPostagePersonalizationAnonymitySize,Color,andReproductionMoneyIncentivesDeadlineDatesCoverLettersSlide11-9OutsourcingSurveyServicesResearchFirmsProvideCentralized-locationinterviewingFocusgroupfacilitiesTrainedstaffwithexperienceData-processingandstatisticalanalysiscapabilitiesAccesstopoint-of-saledataPanelsSlide11-10DonaldCooperPamelaSchindlerChapter12BusinessResearchMethodsChapter12InstrumentsforRespondentCommunicationInstrumentDesignProcessPhase1:DevelopingtheinstrumentdesignstrategyPhase2:ConstructingandrefiningthemeasurementquestionsPhase3:DraftingandrefiningtheinstrumentSlide12-1DevelopingtheInstrumentDesignStrategyManagement-ResearchQuestionHierarchy:Themanagementproblem/questionResearchquestion(s)InvestigativequestionsMeasurementquestionsSlide12-2StrategicConcernsofInstrumentDesignWhattypeofdataisneededtoanswerthemanagementquestion?Whatcommunicationapproachwillbeused?Shouldthequestionsbestructured,unstructured,orsomecombination?Shouldthequestionsbedisguisedorundisguised?Slide12-3WaystoInteractwiththeRespondentPersonalinterviewTelephoneMailComputerSlide12-4Slide12-5TypesofMeasurementQuestions?TargetClassificationAdministrativeAppropriateQuestionContentShouldthisquestionbeasked?Isthequestionofproperscopeandcoverage?Cantherespondentadequatelyanswerthisquestion,asasked?Willtherespondentwillinglyanswerthisquestion,asasked?Slide12-6HowtoTesta
Respondent’sAppropriatenessFilterquestionsScreenquestionsSlide12-7QuestionWordingCriteriaIsthequestionstatedintermsofasharedvocabulary?Doesthequestioncontainvocabularywithasinglemeaning?Doesthequestioncontainunsupportedassumptions?Isthequestioncorrectlypersonalized?Areadequatealternativespresentedwithinthequestion?Slide12-8WhatDictates
YourResponseStrategy?CharacteristicsofrespondentsNatureofthetopic(s)beingstudiedTypeofdataneededYouranalysisplanSlide12-9TypesofResponseQuestionsFree-responseDichotomousMultiple-choiceChecklistRatingRankingSlide12-10GuidelinestoRefiningtheInstrumentAwakentherespondent'sinterestUsebufferquestionsasaguidetorequestsensitiveinformationUsethefunnelapproachtomovetomorespecificquestionsSlide12-11ImprovingSurveyResultsPretestingisanestablishedpracticefordiscoveringerrorsandusefulfortrainingtheresearchteamSlide12-12DonaldCooperPamelaSchindlerChapter13BusinessResearchMethodsChapter13ObservationalStudiesObservationNonbehavioralobservationBehavioralobservationSlide13-1ObservationNonbehavioralobservationRecordanalysisPhysicalconditionanalysisProcessoractivityanalysisSlide13-2ObservationBehavioralobservationNonverbalanalysisLinguisticanalysisExtralinguisticanalysisSpatialanalysisSlide13-3AdvantagesoftheObservationalMethodCollecttheoriginaldataatthetimeitoccursSecureinformationthatparticipantswouldignorebecauseit’ssocom
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 肉制品加工企業(yè)的品牌塑造與品牌形象傳播考核試卷
- 貴金屬選礦藥劑的環(huán)保替代品研究考核試卷
- 行政決策中的效率問題與改進措施試題及答案
- 金屬加工工藝參數(shù)理解與應用考核試卷
- 套題練習信息系統(tǒng)監(jiān)理師試題及答案
- 軟件測試工程師必考題目及答案
- 網(wǎng)絡運營商服務質(zhì)量監(jiān)測試題及答案
- 金屬制品生產(chǎn)過程中的生產(chǎn)計劃與生產(chǎn)控制策略考核試卷
- 花畫工藝品制作與健康生活方式考核試卷
- 道路設計中的人性化因素考慮試題及答案
- 西南交11春學期《模擬電子技術A》離線作業(yè)
- 施工單位平安工地考核評價表(標準)
- JJF 1855-2020純度標準物質(zhì)定值計量技術規(guī)范有機物純度標準物質(zhì)
- GB/T 35194-2017土方機械非公路機械傳動寬體自卸車技術條件
- GB 6245-2006消防泵
- SMT通用作業(yè)指導書
- 工作票培訓-課件
- 三氯乙醛 氯醛MSDS危險化學品安全技術說明書
- 合作社貸款申請書范文(優(yōu)選十三篇)
- 三年級下冊口算天天100題(A4打印版)
- 鑿井穩(wěn)車安裝安全技術交底-
評論
0/150
提交評論