




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年浙江省溫州市普通高校對口單招數(shù)學自考預(yù)測試題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(10題)1.已知互相垂直的平面α,β交于直線l若直線m,n滿足m⊥a,n⊥β則()A.m//LB.m//nC.n⊥LD.m⊥n
2.已知雙曲線x2/a2-y2/b2=1的實軸長為2,離心率為2,則雙曲線C的焦點坐標是()A.(±1,0)B.(±2,0)C.(0,±2)D.(±1,0)
3.集合M={a,b},N={a+1,3},a,b為實數(shù),若M∩N={2},則M∪N=()A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}
4.函數(shù)在(-,3)上單調(diào)遞增,則a的取值范圍是()A.a≥6B.a≤6C.a>6D.-8
5.等比數(shù)列{an}中,若a2
=10,a3=20,則S5等于()A.165B.160C.155D.150
6.已知a是第四象限角,sin(5π/2+α)=1/5,那么tanα等于()A.
B.
C.
D.
7.設(shè)函數(shù)f(x)=x2+1,則f(x)是()
A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)
8.已知平面向量a=(1,3),b(-1,1),則ab=A.(0,4)B.(-1,3)C.0D.2
9.A.第一象限角B.第二象限角C.第一或第二象限角D.小于180°的正角
10.下列立體幾何中關(guān)于線面的四個命題正確的有()(1)垂直與同一平面的兩個平面平行(2)若異面直線a,b不垂直,則過a的任何一個平面與b都不垂直(3)垂直與同一平面的兩條直線一定平行(4)垂直于同一直線兩個平面一定平行A.1個B.2個C.3個D.4個
二、填空題(10題)11.
12.
13.
14.若x<2,則_____.
15.某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A種型號產(chǎn)品有6件,那么n=
。
16.若向量a=(2,-3)與向量b=(-2,m)共線,則m=
。
17.設(shè)lgx=a,則lg(1000x)=
。
18.設(shè){an}是公比為q的等比數(shù)列,且a2=2,a4=4成等差數(shù)列,則q=
。
19.按如圖所示的流程圖運算,則輸出的S=_____.
20.若lgx>3,則x的取值范圍為____.
三、計算題(5題)21.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.
22.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
23.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
24.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
25.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
四、簡答題(10題)26.如圖四面體ABCD中,AB丄平面BCD,BD丄CD.求證:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.
27.已知平行四邊形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中點,求。
28.化簡
29.某籃球運動員進行投籃測驗,每次投中的概率是0.9,假設(shè)每次投籃之間沒有影響(1)求該運動員投籃三次都投中的概率(2)求該運動員投籃三次至少一次投中的概率
30.若α,β是二次方程的兩個實根,求當m取什么值時,取最小值,并求出此最小值
31.數(shù)列的前n項和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項公式(2)a2+a4+a6++a2n的值
32.已知橢圓和直線,求當m取何值時,橢圓與直線分別相交、相切、相離。
33.點A是BCD所在平面外的一點,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
34.已知a是第二象限內(nèi)的角,簡化
35.等差數(shù)列的前n項和為Sn,已知a10=30,a20=50。(1)求通項公式an。(2)若Sn=242,求n。
五、解答題(10題)36.
37.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
38.(1)在給定的直角坐標系中作出函數(shù)f(x)的圖象;(2)求滿足方程f(x)=4的x的值.
39.
40.已知橢圓C:x2/a2+y2/b2=1(a>b>0)的兩焦點分別F1,F2點P在橢圓C上,且∠PF2F1=90°,|PF1|=6,|PF2|=2.(1)求橢圓C的方程;(2)是否存在直線L與橢圓C相交于A、B兩點,且使線段AB的中點恰為圓M:x2+y2+4x-2y=0的圓心,如果存在,求直線l的方程;如果不存在,請說明理由.
41.李經(jīng)理按照市場價格10元/千克在本市收購了2000千克香菇存放人冷庫中.據(jù)預(yù)測,香菇的市場價格每天每千克將上漲0.5元,但冷庫存放這批香菇時每天需要支出費用合計340元,而且香菇在冷庫中最多保存110天,同時,平均每天有6千克的香菇損壞不能出售.(1)若存放x天后,將這批香菇一次性出售,設(shè)這批香菇的銷售總金額為y元,試寫出y與x之間的函數(shù)關(guān)系式;(2)李經(jīng)理如果想獲得利潤22500元,需將這批香菇存放多少天后出售?(提示:利潤=銷售總金額一收購成本一各種費用)(3)李經(jīng)理將這批香菇存放多少天后出售可獲得最大利潤?最大利潤是多少?
42.已知等差數(shù)列{an}的公差為2,其前n項和Sn=pnn+2n,n∈N(1)求p的值及an;(2)在等比數(shù)列{bn}中,b3=a1,b4=a2+4,若{bn}的前n項和為Tn,求證:數(shù)列{Tn+1/6}為等比數(shù)列.
43.已知{an}為等差數(shù)列,且a3=-6,a6=0.(1)求{an}的通項公式;(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項和公式.
44.如圖,一輛汽車在一條水平的公路上向正西行駛,在A處時測得公路北側(cè)一山頂D在西偏北30°的方向上,行駛600m后到達B處,測得此山頂在西偏北75°的方向上,仰角為30°,求此山的高度CD。
45.
六、單選題(0題)46.已知{an}是等差數(shù)列,a1+a7=-2,a3=2,則{an}的公差d=()A.-1B.-2C.-3D.-4
參考答案
1.C直線與平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因為n⊥β,所以n⊥L.
2.B雙曲線的定義.∵2a=2,∴a=1,又c/a=2,∴.c=2,∴雙曲線C的焦點坐標是(±2,0).
3.D集合的運算.∵M∩N=2,∴2∈M,2∈N.∴a+l=2,即a=1.又∵M={a,b},∴b=2.AUB={1,2,3}.
4.A
5.C
6.B三角函數(shù)的誘導(dǎo)公式化簡sin(5π/2+α)=sin(2π+π/2+α)=sin(π/2+α)=cosα=1/5,因α是第四象限角,所以sinα
7.B由題可知,f(x)=f(-x),所以函數(shù)是偶函數(shù)。
8.D
9.D
10.B垂直于同一平面的兩個平面不一定平行;垂直于一平面的直線與該平面內(nèi)的所有直線垂直;垂直于同一平面的兩條直線不一定平行也可能共線;垂直于同一直線的兩個平面平行。
11.-5或3
12.0.4
13.5n-10
14.-1,
15.72
16.3由于兩向量共線,所以2m-(-2)(-3)=0,得m=3.
17.3+alg(1000x)=lg(1000)+lgx=3+a。
18.
,由于是等比數(shù)列,所以a4=q2a2,得q=。
19.20流程圖的運算.由題意可知第一次a=5,s=1,滿足a≥4,S=1×5=5,a=a-1=4,當a=4時滿足a≥4,輸出S=20.綜上所述,答案20.
20.x>1000對數(shù)有意義的條件
21.
22.
23.
24.
25.
26.
27.平行四邊形ABCD,CD為AB平移所得,從B點開始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中點,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
28.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
29.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999
30.
31.
32.∵∴當△>0時,即,相交當△=0時,即,相切當△<0時,即,相離
33.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點O,以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,
34.
35.
36.
37.
38.
39.
40.
41.(1)由題意,y與x之間的函數(shù)關(guān)系式為y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由題(-3x2+940x+20000)-(10×2000+340x)=22500;化簡得,x2-200x+7500=0;解得x1=50,x2=150(不合題意,舍去);因此,李經(jīng)理想獲得利潤22500,元,需將這批香菇存放50天后出售.(3)設(shè)利潤為w,則由(2)得,w=(―3x2+940x+20000)-(10×2000+340x)=-32+600x=-3(x-100)2;因此,當x=100時,wmax=30000;又因為100∈(0,110),所以李經(jīng)理將這批香菇存放100天后
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Msoffice考試難點試題及答案講解
- 全面提升技能的Python試題及答案
- 法律職位面試題及答案大全
- 績效管理財務(wù)成本試題及答案
- 2025年計算機二級Web考試方案設(shè)計試題及答案
- 法律文書電大試題及答案
- 法律碩士考試試題及答案
- 2025年復(fù)習便捷計算機試題及答案
- 法律邏輯試題及答案
- 現(xiàn)代漢語學習者個體差異試題及答案
- 2024年中國工程院戰(zhàn)略咨詢中心勞動人員招聘真題
- 2025福建漳州漳浦金瑞集團招聘20人筆試參考題庫附帶答案詳解
- 地下綜合管廊建設(shè)PPP項目施工組織設(shè)計
- 2025-2030中國風光互補路燈行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025年無人機駕駛員職業(yè)技能考核無人機操作員客戶服務(wù)能力試題
- 2024婚姻家事法律服務(wù)業(yè)白皮書
- 臨時演員聘用合同
- 航空客運包機合同
- 馬拉松志愿者培訓
- 室內(nèi)綠植造景合同協(xié)議
- 車間衛(wèi)生打掃管理制度
評論
0/150
提交評論