江蘇省常州市14校聯(lián)盟2023年高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁
江蘇省常州市14校聯(lián)盟2023年高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁
江蘇省常州市14校聯(lián)盟2023年高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁
江蘇省常州市14校聯(lián)盟2023年高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁
江蘇省常州市14校聯(lián)盟2023年高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.2.若(),,則()A.0或2 B.0 C.1或2 D.13.已知點,點在曲線上運(yùn)動,點為拋物線的焦點,則的最小值為()A. B. C. D.44.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點,有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數(shù)是()A.0 B.1 C.2 D.35.已知的垂心為,且是的中點,則()A.14 B.12 C.10 D.86.()A. B. C. D.7.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.8.已知冪函數(shù)的圖象過點,且,,,則,,的大小關(guān)系為()A. B. C. D.9.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.10.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:11.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.412.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在矩形中,為邊的中點,,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積為.14.設(shè)為數(shù)列的前項和,若,則____15.已知復(fù)數(shù)(為虛數(shù)單位)為純虛數(shù),則實數(shù)的值為_____.16.記為數(shù)列的前項和,若,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標(biāo).18.(12分)已知函數(shù),其中,.(1)函數(shù)的圖象能否與x軸相切?若能,求出實數(shù)a;若不能,請說明理由.(2)若在處取得極大值,求實數(shù)a的取值范圍.19.(12分)已知函數(shù).(1)若,解關(guān)于的不等式;(2)若當(dāng)時,恒成立,求實數(shù)的取值范圍.20.(12分)已知件次品和件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機(jī)檢測一件產(chǎn)品,檢測后不放回,直到檢測出件次品或者檢測出件正品時檢測結(jié)束.(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;(2)已知每檢測一件產(chǎn)品需要費用元,設(shè)表示直到檢測出件次品或者檢測出件正品時所需要的檢測費用(單位:元),求的分布列.21.(12分)已知函數(shù),(Ⅰ)當(dāng)時,證明;(Ⅱ)已知點,點,設(shè)函數(shù),當(dāng)時,試判斷的零點個數(shù).22.(10分)某省新課改后某校為預(yù)測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.(1)根據(jù)條形統(tǒng)計圖,估計本屆高三學(xué)生本科上線率.(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設(shè)以(1)中的本科上線率作為甲市每個考生本科上線的概率.(i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線的概率(結(jié)果精確到0.01);(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設(shè)該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數(shù)據(jù):取,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

分析函數(shù)的定義域和單調(diào)性,然后對選項逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項.【詳解】函數(shù)的定義域為,在上為減函數(shù).A選項,的定義域為,在上為增函數(shù),不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數(shù),符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.2、A【解析】

利用復(fù)數(shù)的模的運(yùn)算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點睛】本小題主要考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.3、D【解析】

如圖所示:過點作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過點作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,當(dāng),即時等號成立.故選:.【點睛】本題考查了拋物線中距離的最值問題,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.4、B【解析】

用空間四邊形對①進(jìn)行判斷;根據(jù)公理2對②進(jìn)行判斷;根據(jù)空間角的定義對③進(jìn)行判斷;根據(jù)空間直線位置關(guān)系對④進(jìn)行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點,有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補(bǔ),故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B【點睛】本小題考查空間點,線,面的位置關(guān)系及其相關(guān)公理,定理及其推論的理解和認(rèn)識;考查空間想象能力,推理論證能力,考查數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.5、A【解析】

由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因為為的垂心,所以,所以,而,所以,因為是的中點,所以.故選:A【點睛】本題考查了利用向量的線性運(yùn)算和向量的數(shù)量積的運(yùn)算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.6、D【解析】

利用,根據(jù)誘導(dǎo)公式進(jìn)行化簡,可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.7、B【解析】

根據(jù),可知命題的真假,然后對取值,可得命題的真假,最后根據(jù)真值表,可得結(jié)果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點睛】本題主要考查對命題真假的判斷以及真值表的應(yīng)用,識記真值表,屬基礎(chǔ)題.8、A【解析】

根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運(yùn)算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.9、B【解析】

設(shè)正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內(nèi),使得每條棱恰好為正方體的面對角線,根據(jù)正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內(nèi),設(shè)正方體的棱長為a,如圖所示,設(shè)正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.【點睛】本題考查球的內(nèi)接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計算能力,屬于中檔題.10、C【解析】

根據(jù)向量的數(shù)量積運(yùn)算,由向量的關(guān)系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數(shù)量積運(yùn)算和命題的充分、必要條件,屬于基礎(chǔ)題.11、D【解析】

圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時取等號,故選:.【點睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.12、C【解析】

利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時,,,故當(dāng)時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達(dá)形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎(chǔ).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,可得所得到的幾何體是由一個圓柱挖去兩個半球而成;其中,圓柱的底面半徑為1,母線長為2;體積為;兩個半球的半徑都為1,則兩個半球的體積為;則所求幾何體的體積為.考點:旋轉(zhuǎn)體的組合體.14、【解析】

當(dāng)時,由,解得,當(dāng)時,,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項公式.【詳解】當(dāng)時,,即,當(dāng)時,,兩式相減可得,即,即,故數(shù)列是以為首項,為公比的等比數(shù)列,所以.故答案為:【點睛】本題考查數(shù)列的前項和與通項公式的關(guān)系,還考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.15、【解析】

利用復(fù)數(shù)的乘法求解再根據(jù)純虛數(shù)的定義求解即可.【詳解】解:復(fù)數(shù)為純虛數(shù),解得.故答案為:.【點睛】本題主要考查了根據(jù)復(fù)數(shù)為純虛數(shù)求解參數(shù)的問題,屬于基礎(chǔ)題.16、-254【解析】

利用代入即可得到,即是等比數(shù)列,再利用等比數(shù)列的通項公式計算即可.【詳解】由已知,得,即,所以又,即,,所以是以-4為首項,2為公比的等比數(shù)列,所以,即,所以。故答案為:【點睛】本題考查已知與的關(guān)系求,考查學(xué)生的數(shù)學(xué)運(yùn)算求解能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)最小值為,此時【解析】

(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標(biāo)和直角坐標(biāo)相互轉(zhuǎn)化公式,求得曲線的直角坐標(biāo)方程.(2)設(shè)出的坐標(biāo),結(jié)合點到直線的距離公式以及三角函數(shù)最值的求法,求得的最小值及此時點的坐標(biāo).【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標(biāo)方程是(2)設(shè),的最小值就是點到直線的最小距離.設(shè)在時,,是最小值,此時,所以,所求最小值為,此時【點睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,考查利用圓錐曲線的參數(shù)求最值,屬于中檔題.18、(1)答案見解析(2)【解析】

(1)假設(shè)函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導(dǎo)數(shù),設(shè)(),根據(jù)函數(shù)的單調(diào)性及在處取得極大值求出a的范圍即可.【詳解】(1)函數(shù)的圖象不能與x軸相切,理由若下:.假設(shè)函數(shù)的圖象與x軸相切于則即顯然,,代入中得,無實數(shù)解.故函數(shù)的圖象不能與x軸相切.(2)(),,設(shè)(),恒大于零.在上單調(diào)遞增.又,,,∴存在唯一,使,且時,時,①當(dāng)時,恒成立,在單調(diào)遞增,無極值,不合題意.②當(dāng)時,可得當(dāng)時,,當(dāng)時,.所以在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,所以在處取得極小值,不合題意.③當(dāng)時,可得當(dāng)時,,當(dāng)時,.所以在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,所以在處取得極大值,符合題意.此時由得即,綜上可知,實數(shù)a的取值范圍為.【點睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.19、(1)(2)【解析】

(1)利用零點分段法將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)對分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當(dāng)時,,由此可知,的解集為(2)當(dāng)時,的最小值為和中的最小值,其中,.所以恒成立.當(dāng)時,,且,不恒成立,不符合題意.當(dāng)時,,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點睛】本小題主要考查絕對值不等式的解法,考查根據(jù)絕對值不等式恒成立求參數(shù)的取值范圍,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.20、(1);(2)見解析.【解析】

(1)利用獨立事件的概率乘法公式可計算出所求事件的概率;(2)由題意可知隨機(jī)變量的可能取值有、、,計算出隨機(jī)變量在不同取值下的概率,由此可得出隨機(jī)變量的分布列.【詳解】(1)記“第一次檢測出的是次品且第二次檢測出的是正品”為事件,則;(2)由題意可知,隨機(jī)變量的可能取值為、、.則,,.故的分布列為【點睛】本題考查概率的計算,同時也考查了隨機(jī)變量分布列,考查計算能力,屬于基礎(chǔ)題.21、(Ⅰ)詳見解析;(Ⅱ)1.【解析】

(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當(dāng)時,討論的零點個數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當(dāng)時,可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個零點,②當(dāng)時,,,∴,∴在恒成立,∴在無零點.③當(dāng)時,,.∴在單調(diào)遞減,,.∴在存在一個零點.綜上,的零點個數(shù)為1..【點睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點問題,考查了分類討論思想,屬于壓軸題.22、(1)60%

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論