新疆第二師華山中學(xué)2022年高考數(shù)學(xué)押題試卷含解析_第1頁
新疆第二師華山中學(xué)2022年高考數(shù)學(xué)押題試卷含解析_第2頁
新疆第二師華山中學(xué)2022年高考數(shù)學(xué)押題試卷含解析_第3頁
新疆第二師華山中學(xué)2022年高考數(shù)學(xué)押題試卷含解析_第4頁
新疆第二師華山中學(xué)2022年高考數(shù)學(xué)押題試卷含解析_第5頁
免費預(yù)覽已結(jié)束,剩余14頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.2.若復(fù)數(shù),其中為虛數(shù)單位,則下列結(jié)論正確的是()A.的虛部為 B. C.的共軛復(fù)數(shù)為 D.為純虛數(shù)3.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標為,則該雙曲線的標準方程可能為()A. B. C. D.4.設(shè)向量,滿足,,,則的取值范圍是A. B.C. D.5.函數(shù)的圖象大致為()A. B.C. D.6.集合,則()A. B. C. D.7.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.8.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.9.的展開式中的系數(shù)為()A.5 B.10 C.20 D.3010.的展開式中,項的系數(shù)為()A.-23 B.17 C.20 D.6311.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.12.已知函數(shù),,且在上是單調(diào)函數(shù),則下列說法正確的是()A. B.C.函數(shù)在上單調(diào)遞減 D.函數(shù)的圖像關(guān)于點對稱二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線為,且經(jīng)過拋物線的焦點,則雙曲線的標準方程為______.14.已知,滿足,則的展開式中的系數(shù)為______.15.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸?shù)母怕适莀____.16.已知圓C:經(jīng)過拋物線E:的焦點,則拋物線E的準線與圓C相交所得弦長是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,且的解集為.(1)求實數(shù),的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數(shù)取值范圍.18.(12分)設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則的模為______.19.(12分)某校為了解校園安全教育系列活動的成效,對全校學(xué)生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應(yīng)等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學(xué)生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.20.(12分)已知數(shù)列,其前項和為,滿足,,其中,,,.⑴若,,(),求證:數(shù)列是等比數(shù)列;⑵若數(shù)列是等比數(shù)列,求,的值;⑶若,且,求證:數(shù)列是等差數(shù)列.21.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設(shè)二面角的大小為,求的值.22.(10分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現(xiàn)統(tǒng)計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數(shù)表:亮燈時長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設(shè)表示這10000盞燈在某一時刻亮燈的數(shù)目.①求的數(shù)學(xué)期望和方差;②若隨機變量滿足,則認為.假設(shè)當時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結(jié)果保留為整數(shù)).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

先求出集合N的補集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.【點睛】本題考查了韋恩圖表示集合,集合的交集和補集的運算,屬于基礎(chǔ)題.2.D【解析】

將復(fù)數(shù)整理為的形式,分別判斷四個選項即可得到結(jié)果.【詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數(shù),正確本題正確選項:【點睛】本題考查復(fù)數(shù)的模長、實部與虛部、共軛復(fù)數(shù)、復(fù)數(shù)的分類的知識,屬于基礎(chǔ)題.3.A【解析】

直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項求解即可【詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【點睛】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標準方程,考查運算求解能力.4.B【解析】

由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數(shù)量積,考查模長公式,準確計算是關(guān)鍵,是基礎(chǔ)題.5.A【解析】

確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項.【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.6.D【解析】

利用交集的定義直接計算即可.【詳解】,故,故選:D.【點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎(chǔ)題.7.D【解析】

如圖所示,過分別作于,于,利用和,聯(lián)立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.8.D【解析】

先由是偶函數(shù),得到關(guān)于直線對稱;進而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因為是偶函數(shù),所以關(guān)于直線對稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數(shù)的性質(zhì)解對應(yīng)不等式,熟記函數(shù)的奇偶性、對稱性、單調(diào)性等性質(zhì)即可,屬于常考題型.9.C【解析】

由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構(gòu)成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數(shù)為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應(yīng)寫準確,本題是一道基礎(chǔ)題.10.B【解析】

根據(jù)二項式展開式的通項公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數(shù)為17.故選:B【點睛】本小題考查二項式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識,考查理解能力,計算能力,分類討論和應(yīng)用意識.11.A【解析】

根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點睛】本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.12.B【解析】

根據(jù)函數(shù),在上是單調(diào)函數(shù),確定,然后一一驗證,A.若,則,由,得,但.B.由,,確定,再求解驗證.C.利用整體法根據(jù)正弦函數(shù)的單調(diào)性判斷.D.計算是否為0.【詳解】因為函數(shù),在上是單調(diào)函數(shù),所以,即,所以,若,則,又因為,即,解得,而,故A錯誤.由,不妨令,得由,得或當時,,不合題意.當時,,此時所以,故B正確.因為,函數(shù),在上是單調(diào)遞增,故C錯誤.,故D錯誤.故選:B【點睛】本題主要考查三角函數(shù)的性質(zhì)及其應(yīng)用,還考查了運算求解的能力,屬于較難的題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過拋物線焦點,能求出雙曲線方程.【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過拋物線焦點,∴,∴雙曲線方程為,故答案為:.【點睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質(zhì)的合理運用,屬于中檔題.14.1【解析】

根據(jù)二項式定理求出,然后再由二項式定理或多項式的乘法法則結(jié)合組合的知識求得系數(shù).【詳解】由題意,.∴的展開式中的系數(shù)為.故答案為:1.【點睛】本題考查二項式定理,掌握二項式定理的應(yīng)用是解題關(guān)鍵.15.【解析】乙不輸?shù)母怕蕿椋?16.【解析】

求出拋物線的焦點坐標,代入圓的方程,求出的值,再求出準線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進而求出弦長.【詳解】拋物線E:的準線為,焦點為(0,1),把焦點的坐標代入圓的方程中,得,所以圓心的坐標為,半徑為5,則圓心到準線的距離為1,所以弦長.【點睛】本題考查了拋物線的準線、圓的弦長公式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2)【解析】

(1)解絕對值不等式得,根據(jù)不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點的坐標,通過分割法將四邊形的面積分為兩個三角形,列出不等式,解不等式即可.【詳解】(1)由得:,,即,解得,.(2)的圖像與直線及圍成的四邊形,,,,.過點向引垂線,垂足為,則.化簡得:,(舍)或.故的取值范圍為.【點睛】本題主要考查了絕對值不等式的求法,以及絕對值不等式在幾何中的應(yīng)用,屬于中檔題.18.1【解析】

整理已知利用復(fù)數(shù)的除法運算方式計算,再由求模公式得答案.【詳解】因為,即所以的模為1故答案為:1【點睛】本題考查復(fù)數(shù)的除法運算與求模,屬于基礎(chǔ)題.19.(1)64,65;(2);(3).【解析】

(1)根據(jù)頻率分布直方圖及其性質(zhì)可求出,平均數(shù),中位數(shù);(2)設(shè)“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,由條件概率公式可求出;(3)從評定等級為“合格”和“不合格”的學(xué)生中隨機抽取10人進行座談,其中“不合格”的學(xué)生數(shù)為,“合格”的學(xué)生數(shù)為6;由題意可得,5,10,15,1,利用“超幾何分布”的計算公式即可得出概率,進而得出分布列與數(shù)學(xué)期望.【詳解】由題意知,樣本容量為,.(1)平均數(shù)為,設(shè)中位數(shù)為,因為,所以,則,解得.(2)由題意可知,分數(shù)在內(nèi)的學(xué)生有24人,分數(shù)在內(nèi)的學(xué)生有12人.設(shè)“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,則,所以.(3)在評定等級為“合格”和“不合格”的學(xué)生中用分層抽樣的方法抽取10人,則“不合格”的學(xué)生人數(shù)為,“合格”的學(xué)生人數(shù)為.由題意可得的所有可能取值為0,5,10,15,1.,.所以的分布列為0510151.【點睛】本題主要考查了頻率分布直方圖的性質(zhì)、分層抽樣、超幾何分布列及其數(shù)學(xué)期望,考查了計算能力,屬于中檔題.20.(1)見解析(2)(3)見解析【解析】試題分析:(1)(),所以,故數(shù)列是等比數(shù)列;(2)利用特殊值法,得,故;(3)得,所以,得,可證數(shù)列是等差數(shù)列.試題解析:(1)證明:若,則當(),所以,即,所以,又由,,得,,即,所以,故數(shù)列是等比數(shù)列.(2)若是等比數(shù)列,設(shè)其公比為(),當時,,即,得,①當時,,即,得,②當時,,即,得,③②①,得,③②,得,解得.代入①式,得.此時(),所以,是公比為1的等比數(shù)列,故.(3)證明:若,由,得,又,解得.由,,,,代入得,所以,,成等差數(shù)列,由,得,兩式相減得:即所以相減得:所以所以,因為,所以,即數(shù)列是等差數(shù)列.21.(1)證明見解析;(2).【解析】

(1)要證明平面平面,只需證明平面即可;(2)取的中點D,連接BD,以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,分別計算平面的法向量為與平面的法向量為,利用夾角公式計算即可.【詳解】(1)在中,,所以,即.因為,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,四邊形為菱形,且,則為正三角形,取的中點D,連接BD,則.以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,則,,,,.設(shè)平面的法向量為,且,.由得取.由四邊形為菱形,得;又平面,所以;又,所以平面,所以平面的法向量為.所以.故.【點睛】本題考查面面垂直的判定定理以及利用向量法求二面角正弦值的問題,在利用向量法時,關(guān)鍵是點的坐標要寫準確,本題是一道中檔題.22.(1)(2)①,,②72【解析】

(1)將每組數(shù)據(jù)的組中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論