




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省梅州市華南中學2022年高一數學理月考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.求值(
)A.
B.
C.
D.參考答案:C
解析:2.數列{an}滿足,則an=()A. B. C. D.參考答案:B【考點】8H:數列遞推式.【分析】利用數列遞推關系即可得出.【解答】解:∵,∴n≥2時,a1+3a2+…+3n﹣2an﹣1=,∴3n﹣1an=,可得an=.n=1時,a1=,上式也成立.則an=.故選:B.3.若∈(),且3cos2=sin(),則sin2的值為
A.一
B.
C.一
D.
參考答案:A4.已知角α的終邊過點P(﹣4,3),則2sinα+cosα的值是()A.1或﹣1 B.或 C.1或 D.參考答案:D【考點】任意角的三角函數的定義.【分析】先計算r,再利用三角函數的定義,求出sinα,cosα的值,即可得到結論.【解答】解:由題意r=|OP|=5,∴sinα=,cosα=﹣,∴2sinα+cosα=2×﹣=,故選:D.5.若函數,則f(f(1))的值為()A.﹣10 B.10 C.﹣2 D.2參考答案:C【考點】函數的值.【分析】先求f(1),再求f(f(1))即可.【解答】解:f(1)=2﹣4=﹣2,f(f(1))=f(﹣2)=2×(﹣2)+2=﹣2,故選C.6.已知函數,若不等式對任意實數恒成立,則實數的取值范圍A. B. C. D.參考答案:B7.下表是x與y之間的一組數據,則y關于x的回歸直線必過()x0123y1357
A.點(2,2)B.點(1.5,2)C.點(1,2)D.點(1.5,4)參考答案:D略8.已知函數f(x)=sin(x∈R,ω>0)的最小正周期為π,將y=f(x)的圖象向左平移|φ|個單位長度,所得圖象關于y軸對稱,則φ的一個值是()參考答案:D略9.(多選題)下列判斷中哪些是不正確的(
)A.是偶函數B.是奇函數C.是偶函數D.是非奇非偶函數參考答案:AD【分析】根據奇函數和偶函數的定義,判斷每個選項函數的奇偶性即可.【詳解】A.的定義域為,定義域不關于原點對稱,不是偶函數,該判斷錯誤;B.設,,則,同理設,也有成立,是奇函數,該判斷正確;C.解得,,的定義域關于原點對稱,且,是偶函數,該判斷正確;D.解得,,或,,是奇函數,該判斷錯誤.故選:AD.【點睛】本題考查了奇函數、偶函數的定義及判斷,考查了推理和計算能力,屬于中檔題.10.已知,,則向量在向量方向上的投影是(
)A.2
B.-2
C.4
D.-4參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.已知圓錐的表面積等于12πcm2,其側面展開圖是一個半圓,則底面圓的半徑為__________cm.參考答案:2cm【分析】設出底面圓的半徑,用半徑表示出圓錐的母線,再利用表面積,解出半徑。【詳解】設圓錐的底面圓的半徑為,母線為,則底面圓面積為,周長為,則解得故填2【點睛】本題考查根據圓錐的表面積求底面圓半徑,屬于基礎題。12.設,函數的最小值是_____________.參考答案:913.如圖中程序運行后,輸出的結果為__________.參考答案:3略14.不等式的解集為
(用集合或區間表示).參考答案:
15.若函數在[1,2]上的函數值恒為正,則實數的取值范圍是__________.參考答案:見解析解:,,時,,時,,綜上:.16..已知△ABC中,角A,B,C的對邊分別為a,b,c,若,,,則b=___,C=_____.參考答案:
【分析】在中,由余弦定理,可求得,再由正弦定理,求得,根據,即,即可求解.【詳解】在中,因為,,,由余弦定理可得,所以,又由正弦定理可得,即,又由,所以,所以.【點睛】本題主要考查了正弦定理、余弦定理的應用,其中在解有關三角形的題目時,要抓住題設條件和利用某個定理的信息,合理應用正弦定理和余弦定理求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.17.化簡:(ab)(﹣3ab)÷(ab)=.參考答案:﹣9a【考點】有理數指數冪的化簡求值.
【專題】函數的性質及應用.【分析】利用指數冪的運算法則即可得出.【解答】解:原式==﹣9a.故答案為:﹣9a.【點評】本題考查了指數冪的運算法則,考查了推理能力與計算能力,屬于中檔題.三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.(1)計算:;(2)計算:.參考答案:【考點】對數的運算性質;有理數指數冪的化簡求值.【專題】計算題;函數思想;函數的性質及應用.【分析】(1)直接利用有理指數冪的運算法則化簡求解即可.(2)利用對數運算法則化簡求解即可.【解答】解:(1)==+1+=4.…(5分)(2)==.…(10分)【點評】本題考查有理指數冪的運算法則以及對數運算法則的應用,是基礎題.19.在某中學舉行的物理知識競賽中,將三個年級參賽學生的成績在進行整理后分成5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組。已知第三小組的頻數是15。(1)求成績在50—70分的頻率是多少;(2)求這三個年級參賽學生的總人數是多少;(3)求成績在80—100分的學生人數是多少;
參考答案:解:(1)成績在50—70分的頻率為:0.03*10+0.04*10=0.7
----4分
(2)第三小組的頻率為:0.015*10=0.15
-------------6分
這三個年級參賽學生的總人數(總數=頻數/頻率)為:15/0.15=100(人)
----------------------------8分(3)成績在80—100分的頻率為:0.01*10+0.005*10=0.15
---------------------------10分則成績在80—100分的人數為:100*0.15=15(人)
-------------------------12分20.集合A=,若B?A求m的取值范圍.參考答案:【考點】集合的包含關系判斷及應用;子集與真子集.【分析】根據題意,解集合A中的不等式組,可得集合A={x|﹣2<x<5},進而對m分2種情況討論:(1)B=Ф,即m+1>2m﹣1時,解可得m的范圍,(2)B≠Ф,即m+1≤2m﹣1時,要使B?A,必有則,解可得m的取值范圍,綜合2種情況即可得答案.【解答】解:集合A中的不等式組得:集合A={x|﹣2<x<5},進而分2種情況討論:(1)B=Ф,此時符合B?A,若m+1>2m﹣1,解可得m<2,此時,m<2;(2)B≠Ф,即m+1≤2m﹣1時,要使B?A,則,解得:2≤m<3,綜合(1)(2)得m的取值范圍是{m|m<3}21.分別抽取甲、乙兩名同學本學期同科目各類考試的6張試卷,并將兩人考試中失分情況記錄如下:甲:18、19、21、22、5、11乙:9、7、23、25、19、13(1)用莖葉圖表示甲乙兩人考試失分數據;(2)從失分數據可認否判斷甲乙兩人誰的考試表現更好?請說明理由.參考答案:【考點】極差、方差與標準差;莖葉圖.【專題】計算題;對應思想;定義法;概率與統計.【分析】(1)用莖葉圖表示出甲乙兩人考試失分數據即可;(2)計算甲、乙二人的平均數與方差,比較大小即可.【解答】解:(1)用莖葉圖表示甲乙兩人考試失分數據,如下;(2)甲的平均數為=(5+11+18+19+21+22)=16,方差為=[(5﹣16)2+(11﹣16)2+(18﹣16)2+(19﹣16)2+(21﹣16)2+(22﹣16)2]=;乙的平均數為=(7+9+13+19+23+25)=16,方差為=[(7﹣16)2+(9﹣16)2+(13﹣16)2+(19﹣16)2+(23﹣16)2+(25﹣16)2]=;∵=,<,∴甲的考試表現更穩定,即甲的考試表現更好.【點評】本題考查了利用莖葉圖求平均數與方差的應用問題,是基礎題目.22.在△ABC中,角A、B、C所對的邊分別為a、b、c.(1)若M為BC邊的中點,求證:;(2)若,求△ABC面積的最大值.參考答案:(1)詳見解析;(2)1.【分析】(1)證法一:根據為邊的中點,可以得到向量等式,平方,再結合余弦定理,可以證明出等式;證法二:分別在和中,利用余弦定理求出和的表達式,利用,可以證明出等式;(2)解法一:解法一:記面積為.由題意并結合(1)所證結論得:,利用已知,再結合基本不等式,最后求可求出面積的最大值;解法二:利用余弦定理把表示出來,結合重要不等式,再利用三角形面積公式可得,令設,利用輔助角公式,可以求出的最大值,即可求出面積的最大值.【詳解】(1)證法一:由題意得
①
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 18威尼斯的小艇 課件
- 靈寶城市總規評估
- 園藝公務員面試題及答案
- 幼教師德考試試題及答案
- 銀座銀行筆試題目及答案
- 大班數學動物分類
- 患者輸血反應應急預案及處理流程
- 人教版七年級語文下冊教學總結模版
- 銀行臨柜工作實習心得體會模版
- 社會企業文化藝術投資協議
- 一年級下冊綜合實踐活動教案山東科技出版社
- 導游講解員暨景區(點)講解員大賽評分表
- 倒虹吸管設計-認識倒虹吸管
- 紀檢監察機關查辦案件工作的技巧及談話策略
- 國有企業招標采購相關法律法規與國有企業采購操作規范
- 《燒(創)傷的急救復蘇與麻醉管理》智慧樹知到課后章節答案2023年下中國人民解放軍總醫院第四醫學中心
- 2023-2024學年寶雞市數學六年級第一學期期末統考試題含答案
- 呼吸衰竭與急性呼吸窘迫綜合征課件
- 胃穿孔修補術課件
- 免疫細胞及其功能檢驗技術(免疫學檢驗課件)
- 車間生產臺帳表
評論
0/150
提交評論