




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關于函數,下列說法正確的是()A.函數的定義域為B.函數一個遞增區間為C.函數的圖像關于直線對稱D.將函數圖像向左平移個單位可得函數的圖像2.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.3.已知復數滿足,其中為虛數單位,則().A. B. C. D.4.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數列的前項和恒成立,則實數的取值范圍是()A. B. C. D.5.函數f(x)=的圖象大致為()A. B.C. D.6.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.7.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.8.若復數滿足,則()A. B. C. D.9.將4名大學生分配到3個鄉鎮去當村官,每個鄉鎮至少一名,則不同的分配方案種數是()A.18種 B.36種 C.54種 D.72種10.正項等比數列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.11.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發現落在正方形花紋上的米共有51粒,據此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.14712.已知為拋物線的準線,拋物線上的點到的距離為,點的坐標為,則的最小值是()A. B.4 C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.若復數z滿足,其中i是虛數單位,則z的模是______.14.關于函數有下列四個命題:①函數在上是增函數;②函數的圖象關于中心對稱;③不存在斜率小于且與函數的圖象相切的直線;④函數的導函數不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)15.已知函數,則________;滿足的的取值范圍為________.16.執行如圖所示的程序框圖,則輸出的結果是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數的取值范圍;(Ⅲ)若數列的前項和,,求證:數列的前項和.18.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.19.(12分)在平面直角坐標系中,橢圓:的右焦點為(,為常數),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點.⑴求橢圓的標準方程;⑵若時,,求實數;⑶試問的值是否與的大小無關,并證明你的結論.20.(12分)萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學校放寒假,寒假結束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉播的時間作了一次調查,得到如圖頻數分布直方圖:(1)若將每天收看比賽轉播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據頻率分布直方圖補全列聯表;并判斷能否有的把握認為該校教職工是否為“冰雪迷”與“性別”有關;(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數為,求的分布列與數學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,21.(12分)在直角坐標系中,曲線的參數方程為(為參數).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標方程;(2)設直線與曲線交于兩點,求的取值范圍.22.(10分)在直角坐標系中,曲線的參數方程為(為參數,),點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程,并指出其形狀;(2)曲線與曲線交于,兩點,若,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
化簡到,根據定義域排除,計算單調性知正確,得到答案.【詳解】,故函數的定義域為,故錯誤;當時,,函數單調遞增,故正確;當,關于的對稱的直線為不在定義域內,故錯誤.平移得到的函數定義域為,故不可能為,錯誤.故選:.【點睛】本題考查了三角恒等變換,三角函數單調性,定義域,對稱,三角函數平移,意在考查學生的綜合應用能力.2、B【解析】
設,則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設,則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.3、A【解析】
先化簡求出,即可求得答案.【詳解】因為,所以所以故選:A【點睛】此題考查復數的基本運算,注意計算的準確度,屬于簡單題目.4、B【解析】
由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數量積,點到直線的距離,數列求和等知識,是一道不錯的綜合題.5、D【解析】
根據函數為非偶函數可排除兩個選項,再根據特殊值可區分剩余兩個選項.【詳解】因為f(-x)=≠f(x)知f(x)的圖象不關于y軸對稱,排除選項B,C.又f(2)==-<0.排除A,故選D.【點睛】本題主要考查了函數圖象的對稱性及特值法區分函數圖象,屬于中檔題.6、C【解析】
幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據三視圖求表面積,意在考查學生的計算能力和空間想象能力.7、D【解析】
根據拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F1(0,),F2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.8、B【解析】
由題意得,,求解即可.【詳解】因為,所以.故選:B.【點睛】本題考查復數的四則運算,考查運算求解能力,屬于基礎題.9、B【解析】
把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉鎮即得.【詳解】把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉鎮,則不同的分配方案有種.故選:.【點睛】本題考查排列組合,屬于基礎題.10、D【解析】
設等比數列的公比為q,,運用等比數列的性質和通項公式,以及等差數列的中項性質,解方程可得公比q.【詳解】由題意,正項等比數列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數列的中項性質和等比數列的通項公式的應用,其中解答中熟記等比數列通項公式,合理利用等比數列的性質是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.11、B【解析】
結合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎題12、B【解析】
設拋物線焦點為,由題意利用拋物線的定義可得,當共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準線,過作交于點,連接由拋物線定義,
,
當且僅當三點共線時,取“=”號,∴的最小值為.
故選:B.【點睛】本題主要考查拋物線的定義、標準方程,以及簡單性質的應用,體現了數形結合的數學思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求得復數,再由復數模的計算公式即得.【詳解】,,則.故答案為:【點睛】本題考查復數的四則運算和求復數的模,是基礎題.14、①②③【解析】
由單調性、對稱性概念、導數的幾何意義、導數與極值的關系進行判斷.【詳解】函數的定義域是,由于,在上遞增,∴函數在上是遞增,①正確;,∴函數的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數的單調性、對稱性,考查導數的幾何意義、導數與極值,解題時按照相關概念判斷即可,屬于中檔題.15、【解析】
首先由分段函數的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因為,所以,∵,∴當時,滿足題意,∴;當時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點睛】本題考查分段函數的性質的應用,分類討論思想,屬于基礎題.16、1【解析】
該程序的功能為利用循環結構計算并輸出變量的值,模擬程序的運行過程,分析循環中各變量值的變化情況,可得答案.【詳解】模擬程序的運行,可得:,,不滿足條件,執行循環體,,,不滿足條件,執行循環體,,,不滿足條件,執行循環體,,,不滿足條件,執行循環體,,,此時滿足條件,退出循環,輸出的值為1.故答案為:1.【點睛】本題考查程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導后討論當時和時的單調性證明,求出實數的取值范圍先求出、的通項公式,利用當時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當且僅當取等號).故在上為增函數.①當時,,故在上為增函數,所以恒成立,故符合題意;②當時,由于,,根據零點存在定理,必存在,使得,由于在上為增函數,故當時,,故在上為減函數,所以當時,,故在上不恒成立,所以不符合題意.綜上所述,實數的取值范圍為(III)證明:由由(Ⅱ)知當時,,故當時,,故,故.下面證明:因為而,所以,,即:點睛:本題考查了利用導數的幾何意義求出參數及證明不等式成立,借助第二問的證明過程,利用導數的單調性證明數列的不等式,在求解的過程中還要求出數列的和,計算較為復雜,本題屬于難題.18、特征值為1,特征向量為.【解析】
設出矩陣M結合矩陣運算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個特征向量.【詳解】設矩陣M=,則AM=,所以,解得,所以M=,則矩陣M的特征方程為,解得,即特征值為1,設特征值的特征向量為,則,即,解得x=0,所以屬于特征值的的一個特征向量為.【點睛】本題主要考查矩陣的運算及特征量的求解,矩陣運算的關鍵是明確其運算規則,側重考查數學運算的核心素養.19、(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數法可得,橢圓方程為;(2)我們要知道=的條件應用,在于直線交橢圓兩交點M,N的橫坐標為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時,由(2)得;另一方面,當斜率存在即時,可設直線的斜率為,得直線MN:,聯立直線與橢圓方程,利用韋達定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關試題解析:(1),得:,橢圓方程為(2)當時,,得:,于是當=時,,于是,得到(3)①當=時,由(2)知②當時,設直線的斜率為,,則直線MN:聯立橢圓方程有,,,=+==得綜上,為定值,與直線的傾斜角的大小無關考點:(1)待定系數求橢圓方程;(2)橢圓簡單的幾何性質;(3)直線與圓錐曲線20、(1)列聯表見解析,有把握;(2)分布列見解析,.【解析】
(1)根據頻率分布直方圖補全列聯表,求出,從而有的把握認為該校教職工是否為“冰雪迷”與“性別”有關.(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數為,則的可能取值為0,1,2,分別求出相應的概率,由此能求出的分布列和數學期望.【詳解】解:(1)由題意得下表:男女合計冰雪迷402060非冰雪迷202040合計6040100的觀測值為所以有的把握認為該校教職工是“冰雪迷”與“性別”有關.(2)由題意知抽取的6名“冰雪迷”中有4名男職工,2名女職工,所以的可能取值為0,1,2.且,,,所以的分布列為012【點睛】本題考查獨立性檢驗的應用,考查離散型隨機變量的分布列、數學期望的求法,考查古典概型、排列組合、頻率分布直方圖的性質等基礎知識,考查運算求解能力,屬于中檔題.21、(1)的極坐標方程為,普通方程為;(2)【解析】
(1)根據三角函數恒等變換可得,,可得曲線的普通方程,再運用圖像的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建近五年中考數學試卷
- 信息化與智能化技術助力畜牧業高質量發展
- 2025年中藥配方顆粒質量標準與市場品牌合作策略研究報告
- 稅務改革對企業資金流動性與成本結構的調整
- 護理學術交流
- 教師健康領域培訓
- 提升培訓能力
- 2025至2030封面相冊行業發展趨勢分析與未來投資戰略咨詢研究報告
- 培訓機構談單流程及話術
- 母親節整合營銷策略
- 山東詠坤新材料科技有限公司年產4000噸鋰鈉電池負極材料生產項目報告書
- 中老年人健康教育宣講
- 四川省成都市成華區2023-2024學年高一下學期期末考試數學試題(解析版)
- 環衛設備部技能提升與安全管理培訓會
- 期末測試卷(含答案含聽力原文無聽力音頻)-2024-2025學年閩教版英語六年級下冊
- 預防青少年藥物濫用-主題班會課件
- 規范辦學專題宣講
- 軍訓教學考試題及答案
- 某地500kW-2MWh用戶側儲能系統技術方案(削峰填谷儲能項目)
- 小學電路知識課件
- 深圳市人才集團筆試題庫
評論
0/150
提交評論