2023屆西藏自治區拉薩市拉薩那曲第二高級中學高考數學五模試卷含解析_第1頁
2023屆西藏自治區拉薩市拉薩那曲第二高級中學高考數學五模試卷含解析_第2頁
2023屆西藏自治區拉薩市拉薩那曲第二高級中學高考數學五模試卷含解析_第3頁
2023屆西藏自治區拉薩市拉薩那曲第二高級中學高考數學五模試卷含解析_第4頁
2023屆西藏自治區拉薩市拉薩那曲第二高級中學高考數學五模試卷含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱柱()A. B. C. D.2.在區間上隨機取一個實數,使直線與圓相交的概率為()A. B. C. D.3.拋物線的焦點為,點是上一點,,則()A. B. C. D.4.大衍數列,米源于我國古代文獻《乾坤譜》中對易傳“大衍之數五十”的推論,主要用于解釋我國傳統文化中的太極衍生原理,數列中的每一項,都代表太極衍生過程中,曾經經歷過的兩儀數量總和.已知該數列前10項是0,2,4,8,12,18,24,32,40,50,…,則大衍數列中奇數項的通項公式為()A. B. C. D.5.設實數x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.46.函數,,的部分圖象如圖所示,則函數表達式為()A. B.C. D.7.a為正實數,i為虛數單位,,則a=()A.2 B. C. D.18.為得到y=sin(2x-πA.向左平移π3個單位B.向左平移πC.向右平移π3個單位D.向右平移π9.函數的最小正周期是,則其圖象向左平移個單位長度后得到的函數的一條對稱軸是()A. B. C. D.10.已知函數,,則的極大值點為()A. B. C. D.11.函數的圖象可能是()A. B. C. D.12.使得的展開式中含有常數項的最小的n為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知x,y>0,且,則x+y的最小值為_____.14.角α的頂點在坐標原點,始邊與x軸的非負半軸重合,終邊經過點P(1,2),則sin(π﹣α)的值是_____.15.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.16.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,.(1)求的值;(2)點為邊上的動點(不與點重合),設,求的取值范圍.18.(12分)已知函數的最大值為2.(Ⅰ)求函數在上的單調遞減區間;(Ⅱ)中,,角所對的邊分別是,且,求的面積.19.(12分)已知數列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數列的通項公式;(2)已知數列滿足,,設數列的前項和為,求大于的最小的正整數的值.20.(12分)[選修45:不等式選講]已知都是正實數,且,求證:.21.(12分)在某外國語學校舉行的(高中生數學建模大賽)中,參與大賽的女生與男生人數之比為,且成績分布在,分數在以上(含)的同學獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數據用該組區間的中點值作代表);(Ⅱ)填寫下面的列聯表,并判斷在犯錯誤的概率不超過的前提下能否認為“獲獎與女生、男生有關”.女生男生總計獲獎不獲獎總計附表及公式:其中,.22.(10分)已知,,不等式恒成立.(1)求證:(2)求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側面BCC1B1內,矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=2、D【解析】

利用直線與圓相交求出實數的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數,考查計算能力,屬于基礎題.3、B【解析】

根據拋物線定義得,即可解得結果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.4、B【解析】

直接代入檢驗,排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點睛】本題考查由數列的項選擇通項公式,解題時可代入檢驗,利用排除法求解.5、C【解析】

畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數,z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據圖像知,當x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規劃問題,畫出圖像是解題的關鍵.6、A【解析】

根據圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據圖像求正弦型函數的解析式,三角函數誘導公式,屬于基礎題.7、B【解析】

,選B.8、D【解析】試題分析:因為,所以為得到y=sin(2x-π3)的圖象,只需要將考點:三角函數的圖像變換.9、D【解析】

由三角函數的周期可得,由函數圖像的變換可得,平移后得到函數解析式為,再求其對稱軸方程即可.【詳解】解:函數的最小正周期是,則函數,經過平移后得到函數解析式為,由,得,當時,.故選D.【點睛】本題考查了正弦函數圖像的性質及函數圖像的平移變換,屬基礎題.10、A【解析】

求出函數的導函數,令導數為零,根據函數單調性,求得極大值點即可.【詳解】因為,故可得,令,因為,故可得或,則在區間單調遞增,在單調遞減,在單調遞增,故的極大值點為.故選:A.【點睛】本題考查利用導數求函數的極值點,屬基礎題.11、A【解析】

先判斷函數的奇偶性,以及該函數在區間上的函數值符號,結合排除法可得出正確選項.【詳解】函數的定義域為,,該函數為偶函數,排除B、D選項;當時,,排除C選項.故選:A.【點睛】本題考查根據函數的解析式辨別函數的圖象,一般分析函數的定義域、奇偶性、單調性、零點以及函數值符號,結合排除法得出結果,考查分析問題和解決問題的能力,屬于中等題.12、B【解析】二項式展開式的通項公式為,若展開式中有常數項,則,解得,當r取2時,n的最小值為5,故選B【考點定位】本題考查二項式定理的應用.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

處理變形x+y=x()+y結合均值不等式求解最值.【詳解】x,y>0,且,則x+y=x()+y1,當且僅當時取等號,此時x=4,y=2,取得最小值1.故答案為:1【點睛】此題考查利用均值不等式求解最值,關鍵在于熟練掌握均值不等式的適用條件,注意考慮等號成立的條件.14、【解析】

計算sinα,再利用誘導公式計算得到答案.【詳解】由題意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案為:.【點睛】本題考查了三角函數定義,誘導公式,意在考查學生的計算能力.15、【解析】

根據題意,由雙曲線的漸近線方程可得,即a=2b,進而由雙曲線的幾何性質可得cb,由雙曲線的離心率公式計算可得答案.【詳解】根據題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點睛】本題考查雙曲線的幾何性質,關鍵是分析a、b之間的關系,屬于基礎題.16、【解析】

由已知可得,結合雙曲線的定義可知,結合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質.本題的關鍵是根據幾何關系,分析出.關于圓錐曲線的問題,一般如果能結合幾何性質,可大大減少計算量.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)先利用同角的三角函數關系求得,再由求解即可;(2)在中,由正弦定理可得,則,再由求解即可.【詳解】解:(1)在中,,所以,所以(2)由(1)可知,所以,在中,因為,所以,因為,所以,所以.【點睛】本題考查已知三角函數值求值,考查正弦定理的應用.18、(Ⅰ)(Ⅱ)【解析】

(1)由題意,f(x)的最大值為所以而m>0,于是m=,f(x)=2sin(x+).由正弦函數的單調性可得x滿足即所以f(x)在[0,π]上的單調遞減區間為(2)設△ABC的外接圓半徑為R,由題意,得化簡得sinA+sinB=2sinAsinB.由正弦定理,得①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0②將①式代入②,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故19、(1)(2)4【解析】

(1)利用判斷是等差數列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數.【詳解】解:任意都有,數列是等差數列,,又是與的等比中項,,設數列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數的值為.【點睛】本題考查等差數列的通項公式和前項和公式及錯位相減法求和.(1)解決等差數列通項的思路(1)在等差數列中,是最基本的兩個量,一般可設出和,利用等差數列的通項公式和前項和公式列方程(組)求解即可.(2)錯位相減法求和的方法:如果數列是等差數列,是等比數列,求數列的前項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數列的公比,然后作差求解;在寫“”與“”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式20、見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證.試題解析:證明:∵,又,∴考點:柯西不等式21、(Ⅰ),;(Ⅱ)詳見解析.【解析】

(Ⅰ)根據概率的性質知所有矩形的面積之和等于列式可解得;(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數為,不獲獎的人數為,從而可得列聯表,再計算出,與臨界值比較可得.【詳解】解:(Ⅰ),.(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數為,不獲獎的人數為,列聯表如下:女生男生總計獲獎不獲獎總計因為,所以在犯錯誤的概率不超過的前提下能認為“獲獎與女生,男生有關.”【點睛】本題主要考查獨立性檢驗,以及由頻率分布直方圖求平均數的問題,熟記獨立性檢驗的思想,以及平均數的計算

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論