2023年宿州職業技術學院高職單招(數學)試題庫含答案解析_第1頁
2023年宿州職業技術學院高職單招(數學)試題庫含答案解析_第2頁
2023年宿州職業技術學院高職單招(數學)試題庫含答案解析_第3頁
2023年宿州職業技術學院高職單招(數學)試題庫含答案解析_第4頁
2023年宿州職業技術學院高職單招(數學)試題庫含答案解析_第5頁
已閱讀5頁,還剩44頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區的她2023年宿州職業技術學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知橢圓(a>b>0)的焦點分別為F1,F2,b=4,離心率e=過F1的直線交橢圓于A,B兩點,則△ABF2的周長為()

A.10

B.12

C.16

D.20答案:D2.已知:如圖,四邊形ABCD內接于⊙O,,過A點的切線交CB的延長線于E點,求證:AB2=BE·CD。

答案:證明:連結AC,因為EA切⊙O于A,所以∠EAB=∠ACB,因為,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四邊形ABCD內接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。3.已知等差數列{an}的前n項和為Sn,若向量OB=a100OA+a101OC,且A、B、C三點共線(該直線不過點O),則S200等于______.答案:由題意可知:向量OB=a100OA+a101OC,又∵A、B、C三點共線,則a100+a101=1,等差數列前n項的和為Sn=(a1+an)?n

2,∴S200=(a1+a200)×200

2=(a100+

a101)×2002=100,故為100.4.設i為虛數單位,若(x+i)(1-i)=y,則實數x,y滿足()

A.x=-1,y=1

B.x=-1,y=2

C.x=1,y=2

D.x=1,y=1答案:C5.對某種花卉的開放花期追蹤調查,調查情況如表:

花期(天)11~1314~1617~1920~22個數20403010則這種卉的平均花期為______天.答案:由表格知,花期平均為12天的有20個,花期平均為15天的有40個,花期平均為18天的有30個,花期平均為21天的有10個,∴這種花卉的評價花期是12×20+15×40+18×30+21×10100=16,故為:166.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積為6,則△ABC的面積為()A.18B.54C.64D.72答案:∵ABCD為平行四邊形∴AB平行于CD∴△AEF∽△CDF∵AE:EB=1:2∴AE:CD=AE:AB=1:3∴S△CDF=32×S△AEF=9×6=54∵AF:CF=AE:CD=1:3∴S△ADF=S△CDF÷3=54÷3=18∴S△ABC=S△ACD=S△CDF+S△ADF=54+18=72故選D7.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),則a?(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a?(b+c)=(2,-3,1)?(2,2,5)=4-6+5=3.故為:3.8.將函數的圖象F按向量平移后所得到的圖象的解析式是,求向量.答案:向量解析:將函數的圖象F按向量平移后所得到的圖象的解析式是,求向量.9.已知f(x)=,若f(x0)>1,則x0的取值范圍是()

A.(0,1)

B.(-∞,0)∪(0,+∞)

C.(-∞,0)∪(1,+∞)

D.(1,+∞)答案:C10.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,則以三條邊長分別為|a|,|b|,|c|所構成的三角形的形狀是______.答案:直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,即|c|a2+b2>

1即|c|2>a2+b2三角形是鈍角三角形.故為:鈍角三角形.11.想要檢驗是否喜歡參加體育活動是不是與性別有關,應該檢驗()

A.H0:男性喜歡參加體育活動

B.H0:女性不喜歡參加體育活動

C.H0:喜歡參加體育活動與性別有關

D.H0:喜歡參加體育活動與性別無關答案:D12.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,以底面正方形ABCD的中心為坐標原點O,分別以射線OB,OC,AA1的指向為x軸、y軸、z軸的正方向,建立空間直角坐標系.試寫出正方體八個頂點的坐標.答案:解設i,j,k分別是與x軸、y軸、z軸的正方向方向相同的單位坐標向量.因為底面正方形的中心為O,邊長為2,所以OB=2.由于點B在x軸的正半軸上,所以OB=2i,即點B的坐標為(2,0,0).同理可得C(0,2,0),D(-2,0,0),A(0,-2,0).又OB1=OB+BB1=2i+2k,所以OB1=(2,0,2).即點B1的坐標為(2,0,2).同理可得C1(0,2,2),D1(-2,0,2),A1(0,-2,2).13.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A14.在復平面內,記復數3+i對應的向量為OZ,若向量OZ饒坐標原點逆時針旋轉60°得到向量OZ所對應的復數為______.答案:向量OZ饒坐標原點逆時針旋轉60°得到向量所對應的復數為(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故為2i.15.如圖,⊙O內切于△ABC的邊于D,E,F,AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.

(1)求證:圓心O在直線AD上.

(2)求證:點C是線段GD的中點.答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點C是線段GD的中點.(10分)16.點P從(2,0)出發,沿圓x2+y2=4按逆時針方向運動弧長到達點Q,則點Q的坐標為()

A.(-1,

)

B.(-,

-1)

C.(-1,

-)

D.(-,

1)答案:C17.曲線xy=1的參數方程不可能是()

A.

B.

C.

D.答案:B18.如圖,點O是正六邊形ABCDEF的中心,則以圖中點A、B、C、D、E、F、O中的任意一點為始點,與始點不同的另一點為終點的所有向量中,除向量外,與向量共線的向量共有()

A.2個

B.3個

C.6個

D.9個

答案:D19.橢圓上有一點P,F1,F2是橢圓的左、右焦點,△F1PF2為直角三角形,則這樣的點P有()

A.3個

B.4個

C.6個

D.8個答案:C20.已知直角三角形兩直角邊長為a,b,求斜邊長c的一個算法分下列三步:

①計算c=a2+b2;

②輸入直角三角形兩直角邊長a,b的值;

③輸出斜邊長c的值;

其中正確的順序是()A.①②③B.②③①C.①③②D.②①③答案:由算法規則得:第一步:輸入直角三角形兩直角邊長a,b的值,第二步:計算c=a2+b2,第三步:輸出斜邊長c的值;這樣一來,就是斜邊長c的一個算法.故選D.21.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______

種(以數字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:48022.若矩陣滿足下列條件:①每行中的四個數所構成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數是相同的.則這樣的不同矩陣的個數為()

A.24

B.48

C.144

D.288答案:C23.某地區教育主管部門為了對該地區模擬考試成績進行分析,抽取了總成績介于350分到650分之間的10000名學生成績,并根據這10000名學生的總成績畫了樣本的頻率分布直方圖.為了進一步分析學生的總成績與各科成績等方面的關系,要從這10000名學生中,再用分層抽樣方法抽出200人作進一步調查,則總成績在[400,500)內共抽出()

A.100人

B.90人

C.65人

D.50人

答案:B24.函數y=ax2+a與(a≠0)在同一坐標系中的圖象可能是()

A.

B.

C.

D.

答案:D25.過直線y=x上的一點作圓(x-5)2+(y-1)2=2的兩條切線l1,l2,當直線l1,l2關于y=x對稱時,它們之間的夾角為()

A.30°

B.45°

C.60°

D.90°答案:C26.設F1,F2分別是橢圓x24+y2=1的左、右焦點,P是第一象限內該橢圓上的一點,且P、F1、F2三點構成一直角三角形,則點P的縱坐標為______.答案:由題意,P是第一象限內該橢圓上的一點,且P、F1、F2三點構成一直角三角形,故可分為兩類:①當∠P為直角時,設P的縱坐標為y,則F1,F2分別是橢圓x24+y2=1的左、右焦點∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當∠PF2F1為直角時,P的橫坐標為3設P的縱坐標為y(y>0),則(3)24+y2=1,∴y=12故為:33

或1227.已知正三角形ABC的邊長為a,求△ABC的直觀圖△A′B′C′的面積.答案:如圖①、②所示的實際圖形和直觀圖.由②可知,A′B′=AB=a,O′C′=12OC=34a,在圖②中作C′D′⊥A′B′于D′,則C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′?C′D′=12×a×68a=616a2.28.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,則λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化為λ2-λ-20=0,又λ>0,解得λ=5.故為5.29.點P(x0,y0)在圓x2+y2=r2內,則直線x0x+y0y=r2和已知圓的公共點的個數為(

A.0

B.1

C.2

D.不能確定答案:A30.P為橢圓x225+y216=1上一點,F1,F2分別為其左,右焦點,則△PF1F2周長為______.答案:由題意知△PF1F2周長=2a+2c=10+6=16.31.給定兩個長度為1且互相垂直的平面向量OA和OB,點C在以O為圓心的圓弧AB上變動.若OC=2xOA+yOB,其中x,y∈R,則x+y的最大值是______.答案:由題意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ則x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故為:5232.經過拋物線y2=2x的焦點且平行于直線3x-2y+5=0的直線的方程是()

A.6x-4y-3=0

B.3x-2y-3=0

C.2x+3y-2=0

D.2x+3y-1=0答案:A33.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內,則m的取值范圍是(

)

A.m≤1

B.0<m≤1

C.m>1

D.0<m<1答案:B34.用反證法證明命題:“三角形的內角至多有一個鈍角”,正確的假設是()

A.三角形的內角至少有一個鈍角

B.三角形的內角至少有兩個鈍角

C.三角形的內角沒有一個鈍角

D.三角形的內角沒有一個鈍角或至少有兩個鈍角答案:B35.已知兩點P(4,-9),Q(-2,3),則直線PQ與y軸的交點分有向線段PQ的比為______.答案:直線PQ與y軸的交點的橫坐標等于0,由定比分點坐標公式可得0=4+λ(-2)1+λ,解得λ=2,故直線PQ與y軸的交點分有向線段PQ的比為

λ=2,故為:2.36.向量b與a=(2,-1,2)共線,且a?b=-18,則b的坐標為______.答案:因為向量b與a=(2,-1,2)共線,所以設b=ma,因為且a?b=-18,所以ma2=-18,因為|a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故為:(-4,2,-4).37.用數學歸納法證明1+2+3+…+n2=,則當n=k+1時左端應在n=k的基礎上加上()

A.k2+1

B.(k+1)2

C.

D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D38.北京期貨商會組織結構設置如下:

(1)會員代表大會下設監事會、會長辦公會,而會員代表大會于會長辦公會共轄理事會;

(2)會長辦公會設會長,會長管理秘書長;

(3)秘書長具體分管:秘書處、規范自律委員會、服務推廣委員會、發展創新委員會.

根據以上信息繪制組織結構圖.答案:繪制組織結構圖:39.在平面直角坐標系中,已知向量a=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).

(1)若AB⊥a,且|AB|=5|OA|(O為坐標原點),求向量OB;

(2)若向量AC與向量a共線,當k>4,且tsinθ取最大值4時,求OA?OC.答案:(1)∵點A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB?a=(n-8,t)?(-1,2)=0,得n=2t+8.則AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,當t=8時,n=24;當t=-8時,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC與向量a共線,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故當sinθ=4k時,tsinθ取最大值32k,有32k=4,得k=8.這時,sinθ=12,k=8,tsinθ=4,得t=8,則OC=(4,8).∴OA?OC=(8,0)?(4,8)=32.40.已知四邊形ABCD中,AB=12DC,且|AD|=|BC|,則四邊形ABCD的形狀是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即線段AB平行于線段CD,且線段AB長度是線段CD長度的一半∴四邊形ABCD為以AB為上底、CD為下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的兩腰相等,因此四邊形ABCD是等腰梯形.故為:等腰梯形41.已知直線的參數方程為x=1+ty=3+2t.(t為參數),圓的極坐標方程為ρ=2cosθ+4sinθ.

(I)求直線的普通方程和圓的直角坐標方程;

(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)42.復數,且A+B=0,則m的值是()

A.

B.

C.-

D.2答案:C43.設圓M的方程為(x-3)2+(y-2)2=2,直線L的方程為x+y-3=0,點P的坐標為(2,1),那么()

A.點P在直線L上,但不在圓M上

B.點P在圓M上,但不在直線L上

C.點P既在圓M上,又在直線L上

D.點P既不在直線L上,也不在圓M上答案:C44.雙曲線x2a2-y2b2=1,(a>0,b>0)的一條漸近線方程是y=3x,坐標原點到直線AB的距離為32,其中A(a,0),B(0,-b).

(1)求雙曲線的方程;

(2)若B1是雙曲線虛軸在y軸正半軸上的端點,過點B作直線交雙曲線于點M,N,求B1M⊥B1N時,直線MN的方程.答案:(1)∵A(a,0),B(0,-b),∴設直線AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴雙曲線方程為:x23-y29=1.(2)∵雙曲線方程為:x23-y29=1,∴A1(-3,0),A2(3,0),設P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),設M(x1,y1),N(x2,y2)∴設直線l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3

y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3

y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)

B1N=(x2,y2-3)∵B1M?B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴lMN:y=±5x-3.45.在平行四邊形ABCD中,等于()

A.

B.

C.

D.答案:C46.已知平面上的向量PA、PB滿足|PA|2+|PB|2=4,|AB|=2,設向量PC=2PA+PB,則|PC|的最小值是

______.答案:|PA|2+|PB|2=4,|AB|=2∴|PA|2+|PB|2=|AB|2∴PA?PB=0∴PC2=4PA2+4PA?PB+PB2=3PA2+4≥4∴|PC|≥2故為2.47.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,過右焦點F且斜率為k(k>0)的直線與C相交于A、B兩點,若AF=3FB,則k=______.答案:設l為橢圓的右準線,過A、B作AA1,BB1垂直于l,A1,B1為垂足,過B作BE⊥AA1于E,則|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.48.若點A的坐標為(3,2),F是拋物線y2=2x的焦點,點M在拋物線上移動時,使|MF|+|MA|取得最小值的M的坐標為()A.(0,0)B.(12,1)C.(1,2)D.(2,2)答案:由題意得F(12,0),準線方程為x=-12,設點M到準線的距離為d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,故當P、A、M三點共線時,|MF|+|MA|取得最小值為|AP|=3-(-12)=72.把y=2代入拋物線y2=2x得x=2,故點M的坐標是(2,2),故選D.49.設雙曲線(a>0,b>0)的右頂點為A,P為雙曲線上的一個動點(不是頂點),從點A引雙曲線的兩條漸近線的平行線,與直線OP分別交于Q,R兩點,其中O為坐標原點,則|OP|2與|OQ|?|OR|的大小關系為()

A.|OP|2<|OQ|?|OR|

B.|OP|2>|OQ|?|OR|

C.|OP|2=|OQ|?|OR|

D.不確定答案:C50.已知平面內的向量a,b,c兩兩所成的角相等,且|a|=2,|b|=3,|c|=5,則|a+b+c|的值的集合為______.答案:設平面內的向量a,b,c兩兩所成的角為α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,當α=0°時,|a+b+c|2=100,|a+b+c|=10,當α=120°時,|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合為{7,10}.故為:{7,10}.第2卷一.綜合題(共50題)1.方程ax2+2x+1=0至少有一個負的實根的充要條件是()

A.0<a≤1

B.a<1

C.a≤1

D.0<a≤1或a<0答案:C2.點M(2,-3,1)關于坐標原點對稱的點是()

A.(-2,3,-1)

B.(-2,-3,-1)

C.(2,-3,-1)

D.(-2,3,1)答案:A3.(本題滿分12分)

已知:

求證:答案:.證明:…………2分由于=………………5分…………①………………6分由于………②……………8分同理:…………③……………10分①+②+③得:即原不等式成立………………12分解析:同答案4.方程4x-3×2x+2=0的根的個數是(

A.0

B.1

C.2

D.3答案:C5.已知P(4,-9),Q(-2,3)且Y軸與線段PQ交于M,則Q分的比為()

A.-2

B.-

C.

D.3答案:B6.如果執行如圖的程序框圖,那么輸出的S=______.答案:根據題意可知該循環體運行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因為i=5>4,結束循環,輸出結果S=46.故為:46.7.不等式的解集是(

A.(-∞,-1)∪(-1,2]

B.[-1,2]

C.(-∞,-1)∪[2,+∞)

D.(-1,2]答案:D8.某制藥廠為了縮短培養時間,決定優選培養溫度,試驗范圍定為29℃至50℃,現用分數法確定最佳溫度,設第1,2,3次試驗的溫度分別為x1,x2,x3,若第2個試點比第1個試點好,則x3的值為(

)。答案:34℃或45℃9.函數f(x)=x+1x的定義域是______.答案:要使原函數有意義,則x≥0x≠0,所以x>0.所以原函數的定義域為(0,+∞).故為(0,+∞).10.等于()

A.a16

B.a8

C.a4

D.a2答案:C11.要考察某種品牌的850顆種子的發芽率,抽取60粒進行實驗.利用隨機數表抽取種子時,先將850顆種子按001,002,…,850進行編號,如果從隨機數表第8行第11列的數1開始向右讀,請你依次寫出最先檢測的4顆種子的編號______,______,______,______.

(下面摘取了隨機數表第7行至第9行的一部分)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38.答案:由于隨機數表中第8行的數字為:63

01

63

78

59

16

95

5567

19

98

10

50

71

75

12

86

73

58

07其第11列數字為1,故產生的第一個數字為:169,第二個數字為:555,第三個數字為:671,第四個數字為:998(超出編號范圍舍)第五個數字為:105故為:169,555,671,10512.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據點到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為1513.已知f(x)是定義域為正整數集的函數,對于定義域內任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立,下列命題成立的是()A.若f(3)≥9成立,則對于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,則對于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,則對于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,則對于任意的k≥4,均有f(k)≥k2成立答案:對A,當k=1或2時,不一定有f(k)≥k2成立;對B,應有f(k)≥k2成立;對C,只能得出:對于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k<7,均有f(k)<k2成立;對D,∵f(4)=25≥16,∴對于任意的k≥4,均有f(k)≥k2成立.故選D14.(選做題)

設集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實數a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區間(﹣∞,1)∪(4,+∞)內直接求解情況比較多,考慮補集設全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內∴,∴,∴,∴∴實數a的取值范圍為.15.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既不充分也不必要條件答案:若a>2且b>2,則必有a+b>4且ab>4成立,故充分性易證若a+b>4且ab>4,如a=8,b=1,此時a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上證明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要條件,故選A16.下列語句不屬于基本算法語句的是()

A.賦值語句

B.運算語句

C.條件語句

D.循環語句答案:B17.甲、乙、丙、丁四名射擊選手在選撥賽中所得的平均環數,其方差S2如下表所示,則選送參加決賽的最佳人選是()

8

9

9

8

S2

5.7

6.2

5.7

6.4

A.甲

B.乙

C.丙

D.丁答案:C18.在極坐標系中,過點p(3,)且垂直于極軸的直線方程為()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A19.有一個質地均勻的正四面體,它的四個面上分別標有1,2,3,4這四個數字.現將它連續拋擲3次,其底面落于桌面,記三次在正四面體底面的數字和為S,則“S恰好為4”的概率為______.答案:由題意知本題是一個古典概型,試驗發生包含的事件是拋擲這顆正四面體骰子兩次,共有4×4×4=64種結果,滿足條件的事件是三次在正四面體底面的數字和為S,S恰好為4,可以列舉出這種事件,(1,1,2),(1,2,1),(2,1,1)共有3種結果,根據古典概型概率公式得到P=364,故為:364.20.在邊長為1的正方形中,有一個封閉曲線圍成的陰影區域,在正方形中隨機的撒入100粒豆子,恰有60粒落在陰影區域內,那么陰影區域的面積為______.

答案:設陰影部分的面積為x,由概率的幾何概型知,則60100=x1,解得x=35.故為:35.21.已知函數y=ax2+bx+c,如果a>b>c,且a+b+c=0,則它的圖象是(

)

A.

B.

C.

D.

答案:D22.若與垂直,則k的值是()

A.2

B.1

C.0

D.答案:D23.已知△ABC的三個頂點為A(1,-2,5),B(-1,0,1),C(3,-4,5),則邊BC上的中線長為______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中點為D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故為:2.24.(坐標系與參數方程選做題)在平面直角坐標系xOy中,曲線C1與C2的參數方程分別為x=ty=t(t為參數)和x=2cosθy=2sinθ(θ為參數),則曲線C1與C2的交點坐標為______.答案:在平面直角坐標系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2

+y2=2

可得x=1y=1,故曲線C1與C2的交點坐標為(1,1),故為(1,1).25.已知拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為______.答案:拋物線y=14x2的標準方程為x2=4y的焦點F(0,1),對稱軸為y軸所以拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為y=1故為y=1.26.圓錐曲線G的一個焦點是F,與之對應的準線是,過F作直線與G交于A、B兩點,以AB為直徑作圓M,圓M與的位置關系決定G

是何種曲線之間的關系是:______

圓M與的位置相離相切相交G

是何種曲線答案:設圓錐曲線過焦點F的弦為AB,過A、B分別向相應的準線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2

?

e.設以AB為直徑的圓半徑為r,圓心到準線的距離為d,即有r=de,橢圓的離心率

0<e<1,此時r<d,圓M與準線相離;拋物線的離心率

e=1,此時r=d,圓M與準線相切;雙曲線的離心率

e>1,此時r>d,圓M與準線相交.故為:橢圓、拋物線、雙曲線.27.如圖,圓心角∠AOB=120°,P是AB上任一點(不與A,B重合),點C在AP的延長線上,則∠BPC等于______.

答案:解:設點E是優弧AB(不與A、B重合)上的一點,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故為60°.28.已知隨機變量x服從二項分布x~B(6,),則P(x=2)=()

A.

B.

C.

D.答案:D29.用秦九韶算法求多項式

在的值.答案:.解析:可根據秦九韶算法原理,將所給多項式改寫,然后由內到外逐次計算即可.

而,所以有,,,,,.即.【名師指引】利用秦九韶算法計算多項式值關鍵是能正確地將所給多項式改寫,然后由內到外逐次計算,由于后項計算需用到前項的結果,故應認真、細心,確保中間結果的準確性.30.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且滿足1對應的元素是4,則這樣的映射有()A.2個B.4個C.8個D.9個答案:∵滿足1對應的元素是4,集合A中還有兩個元素2和3,2可以和4對應,也可以和5對應,3可以和4對應,也可以和5對應,每個元素有兩種不同的對應,∴共有2×2=4種結果,故選B.31.若方程sin2x+4sinx+m=0有實數解,則m的取值范圍是(

A、R

B、(-∞,-5]∪[3,+∞)

C、(-5,3)

D、[-5,3]答案:D32.當a≠0時,y=ax+b和y=bax的圖象只可能是()

A.

B.

C.

D.

答案:A33.已知=1-ni,其中m,n是實數,i是虛數單位,則m+ni=(

A.1+2i

B.1-2i

C.2+i

D.2-i答案:C34.把下列直角坐標方程或極坐標方程進行互化:

(1)ρ(2cos?-3sin?)+1=0

(2)x2+y2-4x=0.答案:(1)將原極坐標方程ρ(2cosθ-3sinθ)+1=0展開后化為:2ρcosθ-3ρsinθ+1=0,化成直角坐標方程為:2x-3y+1=0,(2)把公式x=ρcosθ、y=ρsinθ代入曲線的直角坐標方程為x2+y2-4x=0,可得極坐標方程ρ2-4ρcosθ=0,即ρ=4cosθ.35.若集合A={1,2,3},則集合A的真子集共有()A.3個B.5個C.7個D.8個答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個.故選C.36.已知f(x)=,若f(x0)>1,則x0的取值范圍是()

A.(0,1)

B.(-∞,0)∪(0,+∞)

C.(-∞,0)∪(1,+∞)

D.(1,+∞)答案:C37.4名同學分別報名參加學校的足球隊,籃球隊,乒乓球隊,每人限報其中的一個運動隊,不同報法的種數是()

A.34

B.43

C.24

D.12答案:A38.在平面直角坐標系xOy中,點P的坐標為(-1,1),若取原點O為極點,x軸正半軸為極軸,建立極坐標系,則在下列選項中,不是點P極坐標的是()

A.()

B.()

C.()

D.()答案:D39.利用斜二側畫法畫直觀圖時,①三角形的直觀圖還是三角形;②平行四邊形的直觀圖還是平行四邊形;③正方形的直觀圖還是正方形;④菱形的直觀圖還是菱形.其中正確的是

______.答案:由斜二側直觀圖的畫法法則可知:①三角形的直觀圖還是三角形;正確;②平行四邊形的直觀圖還是平行四邊形;正確.③正方形的直觀圖還是正方形;應該是平行四邊形;所以不正確;④菱形的直觀圖還是菱形.也是平行四邊形,所以不正確.故為:①②40.在y=2x,y=log2x,y=x2,y=cosx這四個函數中,當0<x1<x2<1時,使f(x1+x22)>f(x1)+f(x2)2恒成立的函數的個數是()A.0B.1C.2D.3答案:當0<x1<x2<1時,使f(x1+x22)>f(x1)+f(x2)2恒成立,說明函數一個遞增的越來越慢的函數或者是一個遞減的越來越快的函數或是一個先遞增得越來越慢,再遞減得越來越快的函數考查四個函數y=2x,y=log2x,y=x2,y=cosx中,y=log2x在(0,1)是遞增得越來越慢型,函數y=cosx在(0,1)是遞減得越來越快型,y=2x,y=x2,這兩個函數都是遞增得越來越快型綜上分析知,滿足條件的函數有兩個故選C41.直角△PIB中,∠PBO=90°,以O為圓心、OB為半徑作圓弧交OP于A點.若弧AB等分△POB的面積,且∠AOB=α弧度,則(

A.tanα=α

B.tan=2α

C.sinα=2cosα

D.2sin=cosα答案:B42.如圖,設P,Q為△ABC內的兩點,且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB

所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:4543.(文)若拋物線y2=2px的焦點與橢圓x26+y22=1的右焦點重合,則實數p的值是______.答案:∵x26+y22=1

中a2=6,b2=2,∴c2=4,c=2∴右焦點坐標為(2,0)∵拋物線y2=2px的焦點與橢圓x26+y22=1的右焦點重合∴拋物線y2=2px中p=4故為444.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因為集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.45.設四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個四邊形是

______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對角線相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.46.某籃球運動員在一個賽季的40場比賽中的得分的莖葉圖如圖所示,則這組數據的中位數是______;眾數是______.

答案:將比賽中的得分按照從小到大的順序排,中間兩個數為23,23,所以這組數據的中位數是23,所有的數據中出現次數最多的數是23故為23;2347.讀下面的程序:

上面的程序在執行時如果輸入6,那么輸出的結果為()

A.6

B.720

C.120

D.1答案:B48.已知△ABC是邊長為2a的正三角形,那么它的斜二側所畫直觀圖△A′B′C′的面積為()

A.a2

B.a2

C.a2

D.a2答案:C49.抽樣方法有()A.隨機抽樣、系統抽樣和分層抽樣B.隨機數法、抽簽法和分層抽樣法C.簡單隨機抽樣、分層抽樣和系統抽樣D.系統抽樣、分層抽樣和隨機數法答案:我們常用的抽樣方法有:簡單隨機抽樣、分層抽樣和系統抽樣,而抽簽法和隨機數法,只是簡單隨機抽樣的兩種不同抽取方法故選C50.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過

B作BD⊥AC于D,BD交⊙O于E點,若AE平分

∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D第3卷一.綜合題(共50題)1.如圖,圓與圓內切于點,其半徑分別為與,圓的弦交圓于點(不在上),求證:為定值。

答案:見解析解析:考察圓的切線的性質、三角形相似的判定及其性質,容易題。證明:由弦切角定理可得2.命題“12既是4的倍數,又是3的倍數”的形式是()A.p∨qB.p∧qC.¬pD.簡單命題答案:命題“12既是4的倍數,又是3的倍數”可轉化成“12是4的倍數且12是3的倍數”故是p且q的形式;故選B.3.以直線x+3=0為準線的拋物線的標準方程是______.答案:由題意,拋物線的焦點在x軸上,焦點坐標為(3,0),∴拋物線的標準方程是y2=12x故為:y2=12x4.△ABC中,A(1,2),B(3,1),重心G(3,2),則C點坐標為______.答案:設點C(x,y)由重心坐標公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故點C的坐標為(5,3)故為(5,3)5.把38化為二進制數為()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以驗證所給的四個選項,在A中,2+8+32=42,在B中,2+4+32=38經過驗證知道,B中的二進制表示的數字換成十進制以后得到38,故選B.6.整數630的正約數(包括1和630)共有______個.答案:首先將630分解質因數630=2×32×5×7;然后注意到每一因數可出現的次冪數,如2可有20,21兩種情況,3有30,31,32三種情況,5有50,51兩種情況,7有70,71兩種情況,按分步計數原理,整數630的正約數(包括1和630)共有2×3×2×2=24個.故為:24.7.以下命題:

①兩個共線向量是指在同一直線上的兩個向量;

②共線的兩個向量互相平行;

③共面的三個向量是指在同一平面內的三個向量;

④共面的三個向量是指平行于同一平面的三個向量.

其中正確命題的序號是______.答案:解①根據共面與共線向量的定義可知①錯誤.②根據共線向量的定義可知②正確.③根據共面向量的定義可知③錯誤.④根據共面向量的定義可知④正確.故為:②④.8.如圖,設P,Q為△ABC內的兩點,且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB

所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:459.若直線

3x+y+a=0過圓x2+y2+2x-4y=0的圓心,則a的值為()

A.-1

B.1

C.3

D.-3答案:B10.已知x1、x2是關于x1的方程x2-(k-2)x+k2+3k+5=0的兩個實根,那么x12+x22的最大值是[

]

A.19

B.17

C.

D.18答案:D11.直線l:y-1=k(x-1)和圓C:x2+y2-2y=0的關系是()

A.相離

B.相切或相交

C.相交

D.相切答案:C12.下列函數中,與函數y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數y=1x定義域為x>0,又函數f(x)=log2x定義域x>0,故選A.13.設向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為

______.答案:|a|=1因為|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因為0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:214.若方程x2+y2+kx+2y+k2-11=0表示的曲線是圓,則實數k的取值范圍是______.如果過點(1,2)總可以作兩條直線和圓x2+y2+kx+2y+k2-11=0相切,則實數k的取值范圍是______.答案:方程x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24,由于它表示的曲線是圓,∴48-3k24>0,解得-4<k<4.圓x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24.如果過點(1,2)總可以作兩條直線和圓x2+y2+kx+2y+k2-11=0相切,則點(1,2)一定在圓x2+y2+kx+2y+k2-11=0的外部,∴48-3k24>0,且(1+k2)2+(2+1)2>48-3k24.解得-4<k<-2,或1<k<4.故為:(-4,4),(-4,-2)∪(1,4).15.給定兩個長度為1且互相垂直的平面向量OA和OB,點C在以O為圓心的圓弧AB上變動.若OC=2xOA+yOB,其中x,y∈R,則x+y的最大值是______.答案:由題意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ則x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故為:5216.橢圓=1的焦點為F1,點P在橢圓上,如果線段PF1的中點M在y軸上,那么點M的縱坐標是()

A.±

B.±

C.±

D.±答案:A17.已知拋物線x2=4y的焦點為F,A、B是拋物線上的兩動點,且AF=λFB(λ>0).過A、B兩點分別作拋物線的切線,設其交點為M.

(I)證明FM.AB為定值;

(II)設△ABM的面積為S,寫出S=f(λ)的表達式,并求S的最小值.答案:(1)設A(x1,y1),B(x2,y2),M(xo,yo),焦點F(0,1),準線方程為y=-1,顯然AB斜率存在且過F(0,1)設其直線方程為y=kx+1,聯立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯立方程易解得交點M坐標,xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,FM=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因為|AF|、|BF|分別等于A、B到拋物線準線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當λ=1時,S取得最小值4.18.(文)若拋物線y2=2px的焦點與橢圓x26+y22=1的右焦點重合,則實數p的值是______.答案:∵x26+y22=1

中a2=6,b2=2,∴c2=4,c=2∴右焦點坐標為(2,0)∵拋物線y2=2px的焦點與橢圓x26+y22=1的右焦點重合∴拋物線y2=2px中p=4故為419.如果執行程序框圖,那么輸出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加并輸出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故選C20.不等式|x-2|+|x+1|<5的解集為()

A.(-∞,-2)∪(3,+∞)

B.(-∞,-1)∪(2,+∞)

C.(-2,3)

D.(-∞,+∞)答案:C21.給出一個程序框圖,輸出的結果為s=132,則判斷框中應填()

A.i≥11

B.i≥10

C.i≤11

D.i≤12

答案:A22.隋機變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C23.一個長方體共一頂點的三個面的面積分別是2、3、6,這個長方體的體積是()A.6B.6C.32D.23答案:可設長方體同一個頂點上的三條棱長分別為a,b,c,則有ab=2、bc=3、ca=6,解得:a=2,b=1,c=3故這個長方體的體積是6故為B24.運用三段論推理:

復數不可以比較大小,(大前提)

2010和2011都是復數,(小前提)

2010和2011不可以比較大小.(結

論)

該推理是錯誤的,產生錯誤的原因是______錯誤.(填“大前提”或“小前提”)答案:根據三段論推理,是由兩個前提和一個結論組成,大前提:復數不可以比較大小,是錯誤的,該推理是錯誤的,產生錯誤的原因是大前提錯誤.故為:大前提25.直線l只經過第一、三、四象限,則直線l的斜率k()

A.大于零

B.小于零

C.大于零或小于零

D.以上結論都有可能答案:A26.已知一種材料的最佳加入量在100g到200g之間,若用0.618法安排試驗,則第一次試點的加入量可以是(

)g。答案:161.8或138.227.由直角△ABC勾上一點D作弦AB的垂線交弦于E,交股的延長線于F,交外接圓于G,求證:EG為EA和EB的比例中項,又為ED和EF的比例中項.

答案:證明:連接GA、GB,則△AGB也是一個直角三角形,因為EG為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項.28.意大利數學家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養到第二個月進入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應的程序.答案:見解析解析:解:根據題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數是前面兩個月兔子對數的和,設第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應變第個月兔子的對數(的舊值),變量的新值應變為第個月兔子的對數(的舊值),這樣,用求出變量的新值就是個月兔子的數,依此類推,可以得到一個數序列,數序列的第項就是年底應有兔子對數,我們可以先確定前兩個月的兔子對數均為,以此為基準,構造一個循環程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環得到的就是所求結果.流程圖和程序如下:S=1Q=1I=3WHILE

I<=12F=S+QQ=SS=FI=I+1WENDPRINT

FEND29.如圖所示的多面體,它的正視圖為直角三角形,側視圖為矩形,俯視圖為直角梯形(尺寸如圖所示)

(1)求證:AE∥平面DCF;

(2)若M是AE的中點,AB=3,∠CEF=90°,求證:平面AEF⊥平面BMC.答案:(1)證法1:過點E作EG⊥CF交CF于G,連結DG,可得四邊形BCGE為矩形,又四邊形ABCD為矩形,所以AD=EG,從而四邊形ADGE為平行四邊形故AE∥DG

因為AE?平面DCF,DG?平面DCF,所以AE∥平面DCF

證法2:(面面平行的性質法)因為四邊形BEFC為梯形,所以BE∥CF.又因為BE?平面DCF,CF?平面DCF,所以BE∥平面DCF.因為四邊形ABCD為矩形,所以AB∥DC.同理可證AB∥平面DCF.又因為BE和AB是平面ABE內的兩相交直線,所以平面ABE∥平面DCF.又因為AE?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中點,∴BM⊥AE,由側視圖是矩形,俯視圖是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.30.直線(t為參數)的傾斜角等于()

A.

B.

C.

D.答案:A31.

已知向量

=(4,3),=(1,2),若向量

+k

-

垂直,則k的值為(

)A.

233B.7C.-

115D.-

233答案:考點:數量積判斷兩個平面向量的垂直關系.32.2012年3月2日,國家環保部發布了新修訂的《環境空氣質量標準》.其中規定:居民區的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.

某城市環保部門隨機抽取了一居民區去年20天PM2.5的24小時平均濃度的監測數據,數據統計如下:

組別PM2.5濃度

(微克/立方米)頻數(天)頻率

第一組(0,25]50.25第二組(25,50]100.5第三組(50,75]30.15第四組(75,100)20.1(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;

(Ⅱ)求樣本平均數,并根據樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區的環境是否需要改進?說明理由.答案:(Ⅰ)

設PM2.5的24小時平均濃度在(50,75]內的三天記為A1,A2,A3,PM2.5的24小時平均濃度在(75,100)內的兩天記為B1,B2.所以5天任取2天的情況有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10種.

…(4分)其中符合條件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6種.

…(6分)所以所求的概率P=610=35.

…(8分)(Ⅱ)去年該居民區PM2.5年平均濃度為:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…(10分)因為40>35,所以去年該居民區PM2.5年平均濃度不符合環境空氣質量標準,故該居民區的環境需要改進.

…(12分)33.若log

23(x-2)≥0,則x的范圍是______.答案:由log

23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故為(2,3].34.點M的直角坐標是,則點M的極坐標為()

A.(2,)

B.(2,-)

C.(2,)

D.(2,2kπ+)(k∈Z)答案:C35.某醫療研究所為了檢驗某種血清預防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設H0:“這種血清不能起到預防感冒的作用”,利用2×2列聯表計算得Χ2≈

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論