




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在下面四個幾何體中,從左面看、從上面看分別得到的平面圖形是長方形、圓,這個幾何體是()A. B. C. D.2.如圖,有5個相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.3.下列各式計算正確的是()A. B. C. D.4.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內(nèi)切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,25.下列各式中正確的是()A.9=±3B.(-3)2=﹣3C.396.地球平均半徑約等于6400000米,6400000用科學記數(shù)法表示為()A.64×105 B.6.4×105 C.6.4×106 D.6.4×1077.在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或68.下列說法正確的是()A.對角線相等且互相垂直的四邊形是菱形B.對角線互相平分的四邊形是正方形C.對角線互相垂直的四邊形是平行四邊形D.對角線相等且互相平分的四邊形是矩形9.觀察圖中的“品”字形中個數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為A.75 B.89 C.103 D.13910.下列函數(shù)中,y關于x的二次函數(shù)是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖1,點P從扇形AOB的O點出發(fā),沿O→A→B→0以1cm/s的速度勻速運動,圖2是點P運動時,線段OP的長度y隨時間x變化的關系圖象,則扇形AOB中弦AB的長度為______cm.12.在平面直角坐標系xOy中,點A、B為反比例函數(shù)(x>0)的圖象上兩點,A點的橫坐標與B點的縱坐標均為1,將(x>0)的圖象繞原點O順時針旋轉(zhuǎn)90°,A點的對應點為A′,B點的對應點為B′.此時點B′的坐標是_____.13.已知矩形ABCD,AD>AB,以矩形ABCD的一邊為邊畫等腰三角形,使得它的第三個頂點在矩形ABCD的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)為_______________.14.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.15.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,則∠CDA=°.16.已知AD、BE是△ABC的中線,AD、BE相交于點F,如果AD=6,那么AF的長是_____.三、解答題(共8題,共72分)17.(8分)已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.求一次函數(shù)和反比例函數(shù)的解析式;求△AOB的面積;觀察圖象,直接寫出不等式kx+b﹣>0的解集.18.(8分)關于x的一元二次方程x2﹣(2m﹣3)x+m2+1=1.(1)若m是方程的一個實數(shù)根,求m的值;(2)若m為負數(shù),判斷方程根的情況.19.(8分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達式.足球第一次落地點距守門員多少米?(取)運動員乙要搶到第二個落點,他應再向前跑多少米?20.(8分)先化簡,再求值:,其中m=2.21.(8分)如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.(1)判斷直線l與⊙O的位置關系,并說明理由;(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;(3)在(2)的條件下,若DE=4,DF=3,求AF的長.22.(10分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點,點B在x軸上,點B的橫坐標為,拋物線經(jīng)過A、B、C三點.點D是直線AC上方拋物線上任意一點.(1)求拋物線的函數(shù)關系式;(2)若P為線段AC上一點,且S△PCD=2S△PAD,求點P的坐標;(3)如圖2,連接OD,過點A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當AM+CN的值最大時,求點D的坐標.23.(12分)解方程:24.閱讀下面材料:已知:如圖,在正方形ABCD中,邊AB=a1.按照以下操作步驟,可以從該正方形開始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關系,并且一個比一個小.操作步驟作法由操作步驟推斷(僅選取部分結(jié)論)第一步在第一個正方形ABCD的對角線AC上截取AE=a1,再作EF⊥AC于點E,EF與邊BC交于點F,記CE=a2(i)△EAF≌△BAF(判定依據(jù)是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2為②:第二步以CE為邊構(gòu)造第二個正方形CEFG;第三步在第二個正方形的對角線CF上截取FH=a2,再作IH⊥CF于點H,IH與邊CE交于點I,記CH=a3:(iv)用只含a1的式子表示a3為③:第四步以CH為邊構(gòu)造第三個正方形CHIJ這個過程可以不斷進行下去.若第n個正方形的邊長為an,用只含a1的式子表示an為④請解決以下問題:(1)完成表格中的填空:①;②;③;④;(2)根據(jù)以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規(guī)作圖).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:由題意可知:從左面看得到的平面圖形是長方形是柱體,從上面看得到的平面圖形是圓的是圓柱或圓錐,綜合得出這個幾何體為圓柱,由此選擇答案即可.解:從左面看得到的平面圖形是長方形是柱體,符合條件的有A、C、D,從上面看得到的平面圖形是圓的是圓柱或圓錐,符合條件的有A、B,綜上所知這個幾何體是圓柱.故選A.考點:由三視圖判斷幾何體.2、C【解析】試題解析:左視圖如圖所示:故選C.3、B【解析】A選項中,∵不是同類二次根式,不能合并,∴本選項錯誤;B選項中,∵,∴本選項正確;C選項中,∵,而不是等于,∴本選項錯誤;D選項中,∵,∴本選項錯誤;故選B.4、D【解析】
根據(jù)邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內(nèi)切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內(nèi)切圓半徑==2,故選D.【點睛】本題考查了直角三角形內(nèi)切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關鍵.5、D【解析】
原式利用平方根、立方根定義計算即可求出值.【詳解】解:A、原式=3,不符合題意;B、原式=|-3|=3,不符合題意;C、原式不能化簡,不符合題意;D、原式=23-3=3,符合題意,故選:D.【點睛】此題考查了立方根,以及算術平方根,熟練掌握各自的性質(zhì)是解本題的關鍵.6、C【解析】
由科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:6400000=6.4×106,故選C.點睛:此題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.7、C【解析】
由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當t>2時,t-1=6,解得t=7;當t<1時,2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點睛】本題考查了平面直角坐標系的內(nèi)容,理解題意是解題關鍵.8、D【解析】分析:根據(jù)菱形,正方形,平行四邊形,矩形的判定定理,進行判定,即可解答.詳解:A、對角線互相平分且垂直的四邊形是菱形,故錯誤;
B、四條邊相等的四邊形是菱形,故錯誤;
C、對角線相互平分的四邊形是平行四邊形,故錯誤;
D、對角線相等且相互平分的四邊形是矩形,正確;
故選D.點睛:本題考查了菱形,正方形,平行四邊形,矩形的判定定理,解決本題的關鍵是熟記四邊形的判定定理.9、A【解析】觀察可得,上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,所以b=26=64,又因上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),所以a=11+64=75,故選B.10、B【解析】
判斷一個函數(shù)是不是二次函數(shù),在關系式是整式的前提下,如果把關系式化簡整理(去括號、合并同類項)后,能寫成y=ax2+bx+c(a,b,c為常數(shù),a≠0)的形式,那么這個函數(shù)就是二次函數(shù),否則就不是.【詳解】A.當a=0時,y=ax2+bx+c=bx+c,不是二次函數(shù),故不符合題意;B.y=x(x﹣1)=x2-x,是二次函數(shù),故符合題意;C.的自變量在分母中,不是二次函數(shù),故不符合題意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函數(shù),故不符合題意;故選B.【點睛】本題考查了二次函數(shù)的定義,一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做二次函數(shù),據(jù)此求解即可.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
由圖2可以計算出OB的長度,然后利用OB=OA可以計算出通過弦AB的長度.【詳解】由圖2得通過OB所用的時間為s,則OB的長度為1×2=2cm,則通過弧AB的時間為s,則弧長AB為,利用弧長公式,得出∠AOB=120°,即可以算出AB為.【點睛】本題主要考查了從圖中提取信息的能力和弧長公式的運用及轉(zhuǎn)換,熟練運用公式是本題的解題關鍵.12、(1,-4)【解析】
利用旋轉(zhuǎn)的性質(zhì)即可解決問題.【詳解】如圖,由題意A(1,4),B(4,1),A根據(jù)旋轉(zhuǎn)的性質(zhì)可知′(4,-1),B′(1,-4);
所以,B′(1,-4);故答案為(1,-4).【點睛】本題考查反比例函數(shù)的旋轉(zhuǎn)變換,解題的關鍵是靈活運用所學知識解決問題.13、8【解析】
根據(jù)題意作出圖形即可得出答案,【詳解】如圖,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,為等腰三角形,故有8個滿足題意得點.【點睛】此題主要考查矩形的對稱性,解題的關鍵是根據(jù)題意作出圖形.14、1【解析】
根據(jù)相似三角形的對應邊的比相等列出比例式,計算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點睛】本題考查的是相似三角形的性質(zhì),掌握相似三角形的對應邊的比相等是解題的關鍵.15、1.【解析】
連接OD,根據(jù)圓的切線定理和等腰三角形的性質(zhì)可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點:切線的性質(zhì).16、4【解析】由三角形的重心的概念和性質(zhì),由AD、BE為△ABC的中線,且AD與BE相交于點F,可知F點是三角形ABC的重心,可得AF=AD=×6=4.故答案為4.點睛:此題考查了重心的概念和性質(zhì):三角形的重心是三角形三條中線的交點,且重心到頂點的距離是它到對邊中點的距離的2倍.三、解答題(共8題,共72分)17、(1)反比例函數(shù)解析式為y=﹣,一次函數(shù)的解析式為y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】試題分析:(1)先把點A的坐標代入反比例函數(shù)解析式,即可得到m=﹣8,再把點B的坐標代入反比例函數(shù)解析式,即可求出n=1,然后利用待定系數(shù)法確定一次函數(shù)的解析式;(1)先求出直線y=﹣x﹣1與x軸交點C的坐標,然后利用S△AOB=S△AOC+S△BOC進行計算;(3)觀察函數(shù)圖象得到當x<﹣4或0<x<1時,一次函數(shù)的圖象在反比例函數(shù)圖象上方,據(jù)此可得不等式的解集.試題解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函數(shù)解析式為,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函數(shù)的解析式為y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,則x=﹣1,即直線y=﹣x﹣1與x軸交于點C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由圖可得,不等式的解集為:x<﹣4或0<x<1.考點:反比例函數(shù)與一次函數(shù)的交點問題;待定系數(shù)法求一次函數(shù)解析式.18、(1);(2)方程有兩個不相等的實根.【解析】分析:(1)由方程根的定義,代入可得到關于m的方程,則可求得m的值;
(2)計算方程根的判別式,判斷判別式的符號即可.詳解:(1)∵m是方程的一個實數(shù)根,
∴m2-(2m-3)m+m2+1=1,
∴m=?;
(2)△=b2-4ac=-12m+5,
∵m<1,
∴-12m>1.
∴△=-12m+5>1.
∴此方程有兩個不相等的實數(shù)根.點睛:考查根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關系是解題的關鍵.19、(1)(或)(2)足球第一次落地距守門員約13米.(3)他應再向前跑17米.【解析】
(1)依題意代入x的值可得拋物線的表達式.(2)令y=0可求出x的兩個值,再按實際情況篩選.(3)本題有多種解法.如圖可得第二次足球彈出后的距離為CD,相當于將拋物線AEMFC向下平移了2個單位可得解得x的值即可知道CD、BD.【詳解】解:(1)如圖,設第一次落地時,拋物線的表達式為由已知:當時即表達式為(或)(2)令(舍去).足球第一次落地距守門員約13米.(3)解法一:如圖,第二次足球彈出后的距離為根據(jù)題意:(即相當于將拋物線向下平移了2個單位)解得(米).答:他應再向前跑17米.20、,原式.【解析】
原式括號中兩項通分并利用同分母分式的減法法則計算,約分得到最簡結(jié)果,把m的值代入計算即可求出值.【詳解】原式,當m=2時,原式.【點睛】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.21、(1)直線l與⊙O相切;(2)證明見解析;(3)214【解析】試題分析:(1)連接OE、OB、OC.由題意可證明BE=(2)先由角平分線的定義可知∠ABF=∠CBF,然后再證明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依據(jù)等角對等邊證明BE=EF即可;(3)先求得BE的長,然后證明△BED∽△AEB,由相似三角形的性質(zhì)可求得AE的長,于是可得到AF的長.試題解析:(1)直線l與⊙O相切.理由如下:如圖1所示:連接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴BE=∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直線l與⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=1.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴DEBE=BEAE,即∴AF=AE﹣EF=494﹣1=21考點:圓的綜合題.22、(1)y=﹣x2﹣x+3;(2)點P的坐標為(﹣,1);(3)當AM+CN的值最大時,點D的坐標為(,).【解析】
(1)利用一次函數(shù)圖象上點的坐標特征可求出點A、C的坐標,由點B所在的位置結(jié)合點B的橫坐標可得出點B的坐標,根據(jù)點A、B、C的坐標,利用待定系數(shù)法即可求出拋物線的函數(shù)關系式;(2)過點P作PE⊥x軸,垂足為點E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進而可得出點P的坐標;(3)連接AC交OD于點F,由點到直線垂線段最短可找出當AC⊥OD時AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設點D的坐標為(﹣3t,4t),利用二次函數(shù)圖象上點的坐標特征可得出關于t的一元二次方程,解之取其負值即可得出t值,再將其代入點D的坐標即可得出結(jié)論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點,∴點A的坐標為(﹣4,0),點C的坐標為(0,3).∵點B在x軸上,點B的橫坐標為,∴點B的坐標為(,0),設拋物線的函數(shù)關系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關系式為y=﹣x2﹣x+3;(2)如圖1,過點P作PE⊥x軸,垂足為點E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點P的坐標為(﹣,1);(3)如圖2,連接AC交OD于點F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當點M、N、F重合時,AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,∴,∴設點D的坐標為(﹣3t,4t).∵點D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點D的坐標為(,),故當AM+CN的值最大時,點D的坐標為(,).【點睛】本題考查了待定系數(shù)法求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 服務招聘合同書二零二五年
- 跨國公司戰(zhàn)略調(diào)整-全面剖析
- 位置信息隱私保護-全面剖析
- 非傳統(tǒng)數(shù)據(jù)源在災害預警中的作用-全面剖析
- 鎂礦采選行業(yè)投資風險研究-全面剖析
- 高能粒子物理研究-全面剖析
- 視覺適應對情緒狀態(tài)的影響-全面剖析
- 融合支付技術創(chuàng)新-全面剖析
- 污水處理廠尾水回用-全面剖析
- 社交媒體藝術治療中的情感共鳴-全面剖析
- 小學教育學(第5版)課件 第6章 小學教育內(nèi)容;第7章 小學教育活動
- 完整版高中古詩文必背72篇【原文+注音+翻譯】
- 2025年黑龍江牡丹江市“雪城優(yōu)才”招聘事業(yè)單位480人歷年高頻重點模擬試卷提升(共500題附帶答案詳解)
- 5.1 根本政治制度 同步練習 -2024-2025學年統(tǒng)編版道德與法治八年級下冊
- 2024年03月全國北京銀行總行社會招考(315)筆試歷年參考題庫附帶答案詳解
- 自動化儀表項目可行性研究報告
- 業(yè)主代表大會決議范文
- 2023版肝硬化腹水診療指南解讀
- 《香格里拉松茸保護與利用白皮書》
- 先天性高胰島素性低血糖血癥病因介紹
- 《前列腺癌篩查及治療的臨床研究進展》
評論
0/150
提交評論