




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省臨汾市霍州南環路街道辦事處中學2021年高二數學文測試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.在正方體中,是底面的中心,為的中點,那么直線與所成角的余弦值為(
)
A.
B.
C.
D.
參考答案:B2.設x,y滿足約束條件若目標函數的最大值1,則的最小值為 (
) A. B. C. D.4參考答案:D3.若橢圓+y2=1上一點A到焦點F1的距離為2,B為AF1的中點,O是坐標原點,則|OB|的值為(
).Ks5uA.1
B.2
C.3 D.4參考答案:B略4.“”是“直線和直線互相垂直”的(
)A.充分而不必要條件
B.必要而不充分條件Ks5uC.充要條件
D.既不充分也不必要條件參考答案:B略5.直線與拋物線交于A、B兩點(異于坐標原點O),且,則的值為(
)
A.2
B.-2
C.1
D.-1參考答案:A略6.下列表述正確的是①演繹推理是由一般到特殊的推理;②歸納推理是由部分到整體的推理;③歸納推理是由一般到一般的推理;④類比推理是由特殊到一般的推理;⑤類比推理是由特殊到特殊的推理.A.①②③
B.①③④
C.③④⑤
D.①②⑤參考答案:D7.在建立兩個變量y與x的回歸模型時,分別選擇了4個不同的模型,這四個模型的相關系數R2分別為0.25、0.50、0.98、0.80,則其中擬合效果最好的模型是(
)A.模型1 B.模型2 C.模型3 D.模型4參考答案:C【分析】相關系數的絕對值越靠近1,擬合效果越好,據此得到答案.【詳解】四個模型的相關系數分別為0.25、0.50、0.98、0.80相關系數的絕對值越靠近1,擬合效果越好故答案選C【點睛】本題考查了相關系數,相關系數的絕對值越靠近1,擬合效果越好.8.“”是“”的
(
)A.充分不必要條件
B.必要不充分條件C.充要條件
D.既不充分又不必要條件參考答案:B9.某學生在一門功課的22次考試中,所得分數如圖所示,則此學生該門功課考試分數的極差與中位數之和為(
)A.117
B.118C.118.5
D.119.5參考答案:B10.下列命題錯誤的是A.命題“若m>0,則方程x2+x-m=0有實根”的逆否命題為:“若方程x2+x-m=0無實根,則m≤0”;B.“x=1”是“x2-3x+2=0”的充分不必要條件;C.對于命題p∶∈R,使得++1<0;則﹁p是x∈R,均有x2+x+1≥0;D.命題“若xy=0,則x,y中至少有一個為零”的否定是“若xy≠0,則x,y都不為零”參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.已知點,則它的極坐標是________.參考答案:【分析】直接利用極坐標公式得到答案.【詳解】已知點,則:(在第四象限)故答案為:【點睛】本題考查了極坐標與直角坐標的轉換,屬于簡單題.12.已知橢圓,直線與橢圓相交于A,B兩點,且線段AB的中點為,則直線的方程為_________.參考答案:13.曲線在點處的切線與軸、直線所圍成的三角形的面積為
.參考答案:2略14.一個半徑為1的小球在一個內壁棱長為的正四面體封閉容器內可向各個方向自由運動,則該小球表面永遠不可能接觸到的容器內壁的面積是
.
參考答案:如圖,考慮小球擠在一個角時的情況,記小球半徑為,作平面//平面,與小球相切于點,則小球球心為正四面體的中心,,垂足為的中心.因,故,從而.記此時小球與面的切點為,連接,則.考慮小球與正四面體的一個面(不妨取為)相切時的情況,易知小球在面上最靠近邊的切點的軌跡仍為正三角形,記為,如答12圖2.記正四面體的棱長為,過作于.
因,有,故小三角形的邊長.小球與面不能接觸到的部分的面積為(如答12圖2中陰影部分).又,,所以.由對稱性,且正四面體共4個面,所以小球不能接觸到的容器內壁的面積共為.15.如果任意實數x均使arctan≥–a成立,則a的取值范圍是
。參考答案:a≥016.閱讀如圖所示的程序框圖,若輸出的值為0,則輸入的值為
.參考答案:0或217.觀察(1)(2)由以上兩式成立,推廣到一般結論,寫出你的推論
_.參考答案:若都不是,且,三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.(本題滿分12分)已知幾何體的三視圖如圖所示,其中俯視圖和側視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.(1)求此幾何體的體積;(2)在上是否存在點Q,使得ED⊥平面ACQ,若存在,請說明理由并求出點Q的位置;若不存在,請說明理由.參考答案:解:(1)由該幾何體的三視圖可知垂直于底面,且,,
∴.,此幾何體的體積為.……………5分
(2)過C作CQ⊥ED于Q,則點Q為所求點.∵⊥平面且ED在平面BCED內,∴AC⊥ED.又∵CQ⊥ED,且CQ在平面ACQ內,AC在平面ACQ內,CQ∩AC=C,∴ED⊥平面ACQ.過D作DF⊥EC于F,由△CEQ∽△DEF得:.∴ED上存在點Q,當EQ=時,ED⊥平面ACQ.……………12分
略19.已知定點及直線,動點P到直線l的距離為d,若.(1)求動點P的軌跡C方程;(2)設M、N是C上位于x軸上方的兩點,B坐標為(1,0),且,MN的延長線與x軸交于點,求直線AM的方程.參考答案:(1)(2)【分析】(1)直接把條件用坐標表示,并化簡即可;(2)設,由可得關系,的關系,再結合在曲線上,可解得,從而能求得的方程.【詳解】(1)設,則由,知又,∴由題意知:∴∴∴點的軌跡方程為(2)設,∵∴為中點,∵∴∴又,∴又,∴∵,∴,∴∴直線方程為【點睛】本題考查橢圓的軌跡方程,直線與橢圓的位置關系,求軌跡方程用的是直接法,另外還有定義法、相關點法、參數法、交軌法等.20.已知函數。(Ⅰ)求曲線在點處的切線方程;(Ⅱ)求的極大值。參考答案:(Ⅰ)解:∵, 1分令,解得, 3分∴所求切線方程為, 即(或者寫成)。 4分(Ⅱ)解:∵,令,解得或。 5分列表如下:x0(0,2)2+0-0+↗8↘4↗ 7分∵在上單調遞增,在(0,2)上單調遞減,在處取得極大值,極大值為。 8分21.(本小題滿分14分)已知,若是的必要不充分條件,求實數m的取值范圍。參考答案:22.根據下列條件,分別求圓的方程.①經過P(-2,4)、Q(3,-1)兩點,并且在x軸上截得的弦長等于6;②圓心在直線y=-4x上,且與直線l:x+y-1=0相切于點P(3,-2).參考答案:①設圓的方程為x2+y2+Dx+Ey+F=0,將P、Q兩點的坐標分別代入得又令y=0,得x2+Dx+F=0.③設x1,x2是方程③的兩根,由|x1-x2|=6有D2-4F=36,④由①、②、④解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.故所求圓的方程為x2+y2-2x-4y-8=0,或x2+y2-6x-8y=0............................6分②方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學教師反思與教育信息化實踐的結合探討試題及答案
- 現代教育技術試題及答案
- 小學巖石和礦物試題及答案
- 債權法考試題及答案
- 分子篩與超分子化學試題及答案
- 護理助產試題及答案解析
- 建筑施工安全策略與計劃試題及答案
- 消防時政考試題及答案
- 北京成考入學試題及答案
- 學習2025年創業扶持政策在社會資本運作下的影響試題及答案
- 2024年黑龍江哈爾濱市中考英語真題卷及答案解析
- 【MOOC】道路交通安全-河海大學 中國大學慕課MOOC答案
- 2024年秋兒童發展問題的咨詢與輔導終考期末大作業案例分析1-5答案
- 人教版二年級上冊英語期中考試卷【3套】
- 過程審核表(產品組評分矩陣評審提問表(評分))-2024年百度過
- 2025年湖北省武漢市高考數學模擬試卷附答案解析
- 國家職業技術技能標準 4-14-03-03 眼鏡驗光員 人社廳發2018145號
- 高速公路運營期保險方案
- 2024-2030年中國隱私計算行業發展模式及戰略規劃分析研究報告
- 多旋翼無人機駕駛員執照(CAAC)備考試題庫大全-上部分
- DL-T+5220-2021-10kV及以下架空配電線路設計規范
評論
0/150
提交評論