2022年遼寧省朝陽市建平縣二中高考數學考前最后一卷預測卷含解析_第1頁
2022年遼寧省朝陽市建平縣二中高考數學考前最后一卷預測卷含解析_第2頁
2022年遼寧省朝陽市建平縣二中高考數學考前最后一卷預測卷含解析_第3頁
2022年遼寧省朝陽市建平縣二中高考數學考前最后一卷預測卷含解析_第4頁
2022年遼寧省朝陽市建平縣二中高考數學考前最后一卷預測卷含解析_第5頁
免費預覽已結束,剩余15頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.,則與位置關系是()A.平行 B.異面C.相交 D.平行或異面或相交2.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.3.在條件下,目標函數的最大值為40,則的最小值是()A. B. C. D.24.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.設不等式組表示的平面區域為,若從圓:的內部隨機選取一點,則取自的概率為()A. B. C. D.6.已知,則()A.2 B. C. D.37.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.8.已知復數z,則復數z的虛部為()A. B. C.i D.i9.已知函數,,的零點分別為,,,則()A. B.C. D.10.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或11.造紙術、印刷術、指南針、火藥被稱為中國古代四大發明,此說法最早由英國漢學家艾約瑟提出并為后來許多中國的歷史學家所繼承,普遍認為這四種發明對中國古代的政治,經濟,文化的發展產生了巨大的推動作用.某小學三年級共有學生500名,隨機抽查100名學生并提問中國古代四大發明,能說出兩種發明的有45人,能說出3種及其以上發明的有32人,據此估計該校三級的500名學生中,對四大發明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人12.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐中,,,則該三棱錐的外接球的表面積是________.14.如圖,是圓的直徑,弦的延長線相交于點垂直的延長線于點.求證:15.如圖,在正四棱柱中,P是側棱上一點,且.設三棱錐的體積為,正四棱柱的體積為V,則的值為________.16.已知數列滿足:點在直線上,若使、、構成等比數列,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線Γ:y2=2px(p>0)的焦點為F,P是拋物線Γ上一點,且在第一象限,滿足(2,2)(1)求拋物線Γ的方程;(2)已知經過點A(3,﹣2)的直線交拋物線Γ于M,N兩點,經過定點B(3,﹣6)和M的直線與拋物線Γ交于另一點L,問直線NL是否恒過定點,如果過定點,求出該定點,否則說明理由.18.(12分)已知函數(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數的取值范圍;(Ⅲ)若數列的前項和,,求證:數列的前項和.19.(12分)甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數記為.(1)求的分布列及數學期望;(2)在概率(=0,1,2,3)中,若的值最大,求實數的取值范圍.20.(12分)在平面直角坐標系中,曲線C的參數方程為(為參數).以原點為極點,x軸的非負半軸為極軸,建立極坐標系.(1)求曲線C的極坐標方程;(2)直線(t為參數)與曲線C交于A,B兩點,求最大時,直線l的直角坐標方程.21.(12分)已知六面體如圖所示,平面,,,,,,是棱上的點,且滿足.(1)求證:直線平面;(2)求二面角的正弦值.22.(10分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點為棱的中點.(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】結合圖(1),(2),(3)所示的情況,可得a與b的關系分別是平行、異面或相交.選D.2.C【解析】

利用三角形與相似得,結合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程?!驹斀狻吭O,,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質、漸近線方程求解,考查數形結合思想,考查邏輯推理能力和運算求解能力。3.B【解析】

畫出可行域和目標函數,根據平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標函數,根據圖像知:當時,有最大值為,即,故..當,即時等號成立.故選:.【點睛】本題考查了線性規劃中根據最值求參數,均值不等式,意在考查學生的綜合應用能力.4.A【解析】

設成立;反之,滿足,但,故選A.5.B【解析】

畫出不等式組表示的可行域,求得陰影部分扇形對應的圓心角,根據幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內部的區域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎題.6.A【解析】

利用分段函數的性質逐步求解即可得答案.【詳解】,;;故選:.【點睛】本題考查了函數值的求法,考查對數的運算和對數函數的性質,是基礎題,解題時注意函數性質的合理應用.7.A【解析】

設,延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設,延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.

故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.8.B【解析】

利用復數的運算法則、虛部的定義即可得出【詳解】,則復數z的虛部為.故選:B.【點睛】本題考查了復數的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎題.9.C【解析】

轉化函數,,的零點為與,,的交點,數形結合,即得解.【詳解】函數,,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數形結合法研究函數的零點,考查了學生轉化劃歸,數形結合的能力,屬于中檔題.10.C【解析】

先根據弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設直線的傾斜角為,則,所以,,即,所以直線的方程為.當直線的方程為,聯立,解得和,所以;同理,當直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋物線的位置關系,弦長問題一般是利用弦長公式來處理.出現了到焦點的距離時,一般考慮拋物線的定義.11.D【解析】

先求得名學生中,只能說出一種或一種也說不出的人數,由此利用比例,求得名學生中對四大發明只能說出一種或一種也說不出的人數.【詳解】在這100名學生中,只能說出一種或一種也說不出的有人,設對四大發明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎題.12.B【解析】

首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

將三棱錐補成長方體,設,,,設三棱錐的外接球半徑為,求得的值,然后利用球體表面積公式可求得結果.【詳解】將三棱錐補成長方體,設,,,設三棱錐的外接球半徑為,則,由勾股定理可得,上述三個等式全部相加得,,因此,三棱錐的外接球面積為.故答案為:.【點睛】本題考查三棱錐外接球表面積的計算,根據三棱錐對棱長相等將三棱錐補成長方體是解答的關鍵,考查推理能力,屬于中等題.14.證明見解析.【解析】試題分析:四點共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因為為圓的直徑,所以,又,則四點共圓,所以.又△∽△,所以,即,∴.15.【解析】

設正四棱柱的底面邊長,高,再根據柱體、錐體的體積公式計算可得.【詳解】解:設正四棱柱的底面邊長,高,則,即故答案為:【點睛】本題考查柱體、錐體的體積計算,屬于基礎題.16.13【解析】

根據點在直線上可求得,由等比中項的定義可構造方程求得結果.【詳解】在上,,成等比數列,,即,解得:.故答案為:.【點睛】本題考查根據三項成等比數列求解參數值的問題,涉及到等比中項的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)y2=4x;;(2)直線NL恒過定點(﹣3,0),理由見解析.【解析】

(1)根據拋物線的方程,求得焦點F(,0),利用(2,2),表示點P的坐標,再代入拋物線方程求解.(2)設M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因為A(3,﹣2),B(3,﹣6)在這兩條直線上,分別代入兩直線的方程可得y1y2=12,然后表示直線NL的方程為:y﹣y1(x),代入化簡求解.【詳解】(1)由拋物線的方程可得焦點F(,0),滿足(2,2)的P的坐標為(2,2),P在拋物線上,所以(2)2=2p(2),即p2+4p﹣12=0,p>0,解得p=2,所以拋物線的方程為:y2=4x;(2)設M(x0,y0),N(x1,y1),L(x2,y2),則y12=4x1,y22=4x2,直線MN的斜率kMN,則直線MN的方程為:y﹣y0(x),即y①,同理可得直線ML的方程整理可得y②,將A(3,﹣2),B(3,﹣6)分別代入①,②的方程可得,消y0可得y1y2=12,易知直線kNL,則直線NL的方程為:y﹣y1(x),即yx,故yx,所以y(x+3),因此直線NL恒過定點(﹣3,0).【點睛】本題主要考查了拋物線的方程及直線與拋物線的位置關系,直線過定點問題,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.18.(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導后討論當時和時的單調性證明,求出實數的取值范圍先求出、的通項公式,利用當時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當且僅當取等號).故在上為增函數.①當時,,故在上為增函數,所以恒成立,故符合題意;②當時,由于,,根據零點存在定理,必存在,使得,由于在上為增函數,故當時,,故在上為減函數,所以當時,,故在上不恒成立,所以不符合題意.綜上所述,實數的取值范圍為(III)證明:由由(Ⅱ)知當時,,故當時,,故,故.下面證明:因為而,所以,,即:點睛:本題考查了利用導數的幾何意義求出參數及證明不等式成立,借助第二問的證明過程,利用導數的單調性證明數列的不等式,在求解的過程中還要求出數列的和,計算較為復雜,本題屬于難題.19.(1),ξ的分布列為ξ

0

1

2

3

P

(1-a)2

(1-a2)

(2a-a2)

(2)【解析】(1)P(ξ)是“ξ個人命中,3-ξ個人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ

0

1

2

3

P

(1-a)2

(1-a2)

(2a-a2)

ξ的數學期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.20.(1);(2).【解析】

(1)利用消去參數,得到曲線的普通方程,再將,代入普通方程,即可求出結論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點,最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數方程(為參數),可得曲線C的普通方程為,因為,所以曲線C的極坐標方程為,即.(2)因為直線(t為參數)表示的是過點的直線,曲線C的普通方程為,所以當最大時,直線l經過圓心.直線l的斜率為,方程為,所以直線l的直角坐標方程為.【點睛】本題考查參數方程與普通方程互化、直角坐標方程與極坐標方程互化、直線與曲線的位置關系,考查化歸和轉化思想,屬于中檔題.21.(1)證明見解析(2)【解析】

(1)連接,設,連接.通過證明,證得直線平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的正弦值.【詳解】(1)連接,設,連接,因為,所以,所以,在中,因為,所以,且平面,故平面.(2)因為,,,,,所以,因為,平面,所以平面,所以,,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標系,由已知可得,,,,所以,因為,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論