




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年遼寧省鞍山市海城析木中學高三數學理模擬試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.更相減損術是出自中國古代數學專著《九章算術》的一種算法,其內容如下:“可半者半之,不可半者,副置分母、子之數,以少減多,更相減損,求其等也.以等數約之.”右圖是該算法的程序框圖,如果輸入a=153,b=119,則輸出的a值是()A.16 B.17 C.18 D.19參考答案:B【考點】EF:程序框圖.【分析】由循環結構的特點,先判斷,再執行,分別計算出當前的a,b的值,即可得到結論.【解答】解:第一次循環得:a=153﹣119=34;第二次循環得:b=119﹣34=85;第三次循環得:b=85﹣34=51;同理,第四次循環b=51﹣34=17;第五次循環a=34﹣17=17,此時a=b,輸出a=17,故選:B.【點評】本題考查算法和程序框圖,主要考查循環結構的理解和運用,以及賦值語句的運用,屬于基礎題.2.設,則a,b,c的大小關系為()A.a>b>c B.a>c>b C.b>a>c D.c>b>a參考答案: A【考點】對數值大小的比較.【分析】利用指數函數、對數函數的單調性求解.【解答】解:∵,>20160=1,0=log20161>b=>=,c=<=,∴a>b>c.a,b,c的大小關系為a>b>c.故選:A.【點評】本題考查三個數的大小的比較,是基礎題,解題時要認真審題,注意指數函數、對數函數的單調性的合理運用.3.將函數f(x)=的圖象向左平移個單位,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象關于x=對稱,則|φ|的最小值為()A. B. C. D.參考答案:B【考點】函數y=Asin(ωx+φ)的圖象變換.【分析】利用函數y=Asin(ωx+φ)的圖象變換規律,三角函數的圖象的對稱性,求得|φ|的最小值.【解答】解:將函數f(x)=的圖象向左平移個單位,可得y=sin[2(x+)+φ]=sin(2x++φ)的圖象;再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),可得y=sin(x++φ)的圖象.根據所得圖象關于x=對稱,可得+φ=kπ+,即φ=kπ﹣,故|φ|的最小值為,故選:B.【點評】本題主要考查函數y=Asin(ωx+φ)的圖象變換規律,三角函數的圖象的對稱性,屬于基礎題.4.已知中,三個內角A,B,C的對邊分別為a,b,c,若的面積為S,且等于A.
B.
C.
D.
參考答案:5.若函數y=f(x)的定義域是[0,2],則函數g(x)=的定義域是()A.[0,1] B.[0,1) C.[0,1)∪(1,4] D.(0,1)參考答案:B【考點】33:函數的定義域及其求法.【分析】根據f(2x)中的2x和f(x)中的x的取值范圍一樣得到:0≤2x≤2,又分式中分母不能是0,即:x﹣1≠0,解出x的取值范圍,得到答案.【解答】解:因為f(x)的定義域為[0,2],所以對g(x),0≤2x≤2且x≠1,故x∈[0,1),故選B.6.已知點,.若,則=
(
)A.
B.2
C.
D.參考答案:C7.執行如圖的程序框圖,輸出的結果為()A.136 B.134 C.268 D.266參考答案:D【考點】程序框圖.【分析】執行程序框圖,依次寫出每次循環得到的S、i的值,即可求出程序運行后輸出S的值.【解答】解:執行如圖的程序框圖,有S=1,i=1滿足條件i>1,有S=1×8﹣2=6,i=6滿足條件i>1,有S=6×6﹣2=34,i=4滿足條件i>1,有S=34×4﹣2=134,i=2滿足條件i>1,有S=134×2﹣2=266,i=0不滿足條件i>1,輸出S=266.故選:D.8.若函數的圖象關于點對稱,則f(x)的單調速增區間為A.
B.C.
D.參考答案:C【分析】利用兩角和的正弦公式化成標準形式,根據圖象關于點對稱,求出θ的值,然后根據正弦函數的單調增區間求函數f(x)的單調增區間.【詳解】f(x)=sin(2x+θ)+cos(2x+θ),=2sin(2x+θ+),∵圖象關于點對稱,∴2×+θ+=kπ,(k∈Z)∴θ=kπ,(k∈Z),∵|θ|<,∴,∴f(x)=2sin(2x+);由(k∈Z)解得:(k∈Z)∴函數f(x)的增區間為.故選:C.
9.在等差數列中,若,則
的值為(
)
A.24
B.15
C.16
D.17參考答案:答案:A
10.函數y=f(x)的圖象是圓心在原點的單位圓的兩段弧(如圖),則不等式f(x)<f(﹣x)+2x的解集為() A. B. C. D. 參考答案:考點: 其他不等式的解法.專題: 計算題;轉化思想.分析: 根據圖象得知是奇函數,據此將“不等式f(x)<f(﹣x)+2x”轉化為“f(x)<x”,再令y=f(x),y=x,利用圖象求解.解答: 解:如圖所示:函數是奇函數∴不等式f(x)<f(﹣x)+2x可轉化為:f(x)<x,令y=f(x),y=x如圖所示:故選A.點評: 本題主要考查利用函數圖象的相對位置關系來解不等式,關鍵是轉化為特定的基本函數,能畫其圖象.二、填空題:本大題共7小題,每小題4分,共28分11.定義在R上的奇函數,當時,則函數的所有零點之和為_____.參考答案:【分析】函數F(x)=f(x)﹣a(0<a<1)的零點轉化為:在同一坐標系內y=f(x),y=a的圖象交點的橫坐標;作出兩函數圖象,考查交點個數,結合方程思想,及零點的對稱性,根據奇函數f(x)在x≥0時的解析式,作出函數的圖象,結合圖象及其對稱性,求出答案.【詳解】∵當x≥0時,f(x)=即x∈[0,1)時,f(x)=(x+1)∈(﹣1,0];x∈[1,3]時,f(x)=x﹣2∈[﹣1,1];x∈(3,+∞)時,f(x)=4﹣x∈(﹣∞,﹣1);畫出x≥0時f(x)的圖象,再利用奇函數的對稱性,畫出x<0時f(x)的圖象,如圖所示;則直線y=a,與y=f(x)的圖象有5個交點,則方程f(x)﹣a=0共有五個實根,最左邊兩根之和為﹣6,最右邊兩根之和為6,∵x∈(﹣1,0)時,﹣x∈(0,1),∴f(﹣x)=(﹣x+1),又f(﹣x)=﹣f(x),∴f(x)=﹣(﹣x+1)=(1﹣x)﹣1=log2(1﹣x),∴中間的一個根滿足log2(1﹣x)=a,即1﹣x=2a,解得x=1﹣2a,∴所有根的和為1﹣2a.故答案為:1﹣2a.【點睛】本題考查分段函數的圖象與性質的應用問題,也考查了利用函數零點與方程的應用問題,是綜合性題目.
12.若,則實數a的值是
;參考答案:13.(x++2)5的展開式中整理后的常數項為.參考答案:252【考點】DB:二項式系數的性質.【分析】(x++2)5=的通項公式:Tr+1=x5﹣r,令5﹣r=0,解得r,進而得出.【解答】解:(x++2)5=的通項公式:Tr+1==x5﹣r,令5﹣r=0,解得r=5.∴常數項==252.故答案為:252.【點評】本題考查了二項式定理的通項公式,考查了推理能力與計算能力,屬于基礎題.14.已知e1,e2是夾角為60°的兩個單位向量,若a=e1+e2,b=-4e1+2e2,則a與b的夾角為
參考答案:略15.若函數則函數的零點為_________.參考答案:略
16.若二項式的展開式中的常數項為m,則______.參考答案:12417.設
分別是橢圓的左、右焦點,過的直線與相交于兩點,且成等差數列,則的長為
.參考答案:三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.如圖,已知平面,,是正三角形,AD=DEAB,且F是CD的中點.⑴求證:AF//平面BCE;⑵求證:平面BCE⊥平面CDE.參考答案:(1)取CE中點P,連結FP、BP。
∵F為CD的中點,∴FP//DE,且FP=又AB//DE,且AB=
∴AB//FP,且AB=FP,∴ABPF為平行四邊形,∴AF//BP.
又∵AF平面BCE,BP平面BCE,
∴AF//平面BCE.
⑵∵△ACD為正三角形,∴AF⊥CD.∵DE⊥平面ACD,AF平面ACD,∴DE⊥AF
又AF⊥CD,CD∩DE=D,
∴AF⊥平面CDE.
又BP//AF,∴BP⊥平面CDE。
又∵BP平面BCE,∴平面BCE⊥平面CDE.
略19.已知函數.(Ⅰ)求函數f(x)的單調遞增區間;(Ⅱ)在△ABC中,內角A、B、C的對邊分別為a、b、c.已知,a=2,,求△ABC的面積.參考答案:【考點】兩角和與差的正弦函數;正弦函數的單調性;正弦定理.【分析】(Ⅰ)利用兩角和差的正弦公化簡函數的解析式為sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的范圍,即可求得f(x)的單調遞增區間.(Ⅱ)由已知,可得sin(2A+)=,求得A=,再利用正弦定理求得b的值,由三角形內角和公式求得C的值,再由S=ab?sinC,運算求得結果.【解答】解:(Ⅰ)=sin2xcos+cos2xsin+cos2x=sin2x+cos2x=(sin2x+cos2x)=sin(2x+).令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,函數f(x)的單調遞增區間為[kπ﹣,kπ+],k∈z.(Ⅱ)由已知,可得sin(2A+)=,因為A為△ABC內角,由題意知0<A<π,所以<2A+<,因此,2A+=,解得A=.由正弦定理,得b=,…由A=,由B=,可得sinC=,…∴S=ab?sinC==.20.(本小題滿分12分)如圖,⊙O內切于△ABC的邊于D,E,F,AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G(1)求證:圓心O在直線AD上;(2)若BC=2,求GC的長.參考答案:(I)證明:∵,∴………2分又,∴……………………4分又是等腰三角形∴是的平分線∴圓心在直線上………6分
(II)連接,由(I)知,是⊙的直徑
∴,∴………………7分又∴……8分∵⊙與相切于點∴∴……10分∴由,得…………12分21.如圖,是圓的直徑,點是圓上異于的點,直線平面,,分別是,的中點。(I)記平面與平面的交線為,試判斷直線與平面的位置關系,并加以證明;(II)設(I)中的直線與圓的另一個交點為,且點滿足。記直線與平面所成的角為,異面直線與所成的角為,二面角的大小為,求證:。參考答案:(I),,又(II)連接DF,用幾何方法很快就可以得到求證。(這一題用幾何方法較快,向量的方法很麻煩,特別是用向量不能方便的表示角的正弦。個人認為此題與新課程中對立體幾何的處理方向有很大的偏差。)【相關知識點】22.在直角坐標系xOy中,曲線C的參數方程為(為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的普通方程和直線l的直角坐標方程;(2)設直線l與x軸交于點A,與直線交于點B,點P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆湖南省長沙市一中學湘一南湖學校七年級數學第二學期期末聯考模擬試題含解析
- 2025屆湖北省武漢市武漢外學校七下數學期末監測試題含解析
- 行業風險分析與公司戰略試題及答案
- 法學概論精煉解析試題及答案
- 培養批判性思維2025年軟件設計師考試試題及答案
- 綜合軟件設計師考試試題及答案概覽
- 食品衛生考試試題及答案
- 湖北環保面試題及答案
- 眼科醫生技能考試試題及答案
- 揚職大育嬰師考試試題及答案
- 教科版六下科學全冊課時練(含答案)
- GB/T 18781-2023珍珠分級
- GA/T 544-2021多道心理測試系統通用技術規范
- 年代小說先鋒小說
- 【超星爾雅學習通】世界建筑史網課章節答案
- (52)-皰疹性咽峽炎小兒推拿探秘
- 土建施工員培訓課件
- 新音樂初放 學堂樂歌說課課件
- GMP體系文件(手冊+程序)
- 陜西延長石油四海煤化工有限公司金屬鎂廠1萬噸-年金屬鎂生產項目環評報告
- 集電線路安裝工程質量通病防治
評論
0/150
提交評論