




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標系xOy中,點A從出發,繞點O順時針旋轉一周,則點A不經過()A.點M B.點N C.點P D.點Q2.如圖,將△ABC繞點B順時針旋轉60°得△DBE,點C的對應點E恰好落在AB延長線上,連接AD.下列結論一定正確的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC3.下列計算正確的是()A.x4?x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=14.某公園有A、B、C、D四個入口,每個游客都是隨機從一個入口進入公園,則甲、乙兩位游客恰好從同一個入口進入公園的概率是()A. B. C. D.5.已知A、B兩地之間鐵路長為450千米,動車比火車每小時多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設動車速度為每小時x千米,則可列方程為()A. B.C. D.6.下列算式的運算結果正確的是()A.m3?m2=m6B.m5÷m3=m2(m≠0)C.(m﹣2)3=m﹣5D.m4﹣m2=m27.在平面直角坐標系中,將點P(﹣4,2)繞原點O順時針旋轉90°,則其對應點Q的坐標為()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)8.如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應點B1的坐標是(1,2),則點A1,C1的坐標分別是()A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)9.如圖,正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,CH┴AF與點H,那么CH的長是()A. B. C. D.10.如果m的倒數是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣2018二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,⊙M的半徑為2,圓心M(3,4),點P是⊙M上的任意一點,PA⊥PB,且PA、PB與x軸分別交于A、B兩點,若點A、點B關于原點O對稱,則AB的最小值為_____.12.如圖所示,直線y=x+1(記為l1)與直線y=mx+n(記為l2)相交于點P(a,2),則關于x的不等式x+1≥mx+n的解集為__________.13.如圖,矩形ABCD,AB=2,BC=1,將矩形ABCD繞點A順時針旋轉90°得矩形AEFG,連接CG、EG,則∠CGE=________.14.比較大?。?_________(填<,>或=).15.地球上的海洋面積約為361000000km1,則科學記數法可表示為_______km1.16.計算的結果為_____.三、解答題(共8題,共72分)17.(8分)如圖所示,在?ABCD中,E是CD延長線上的一點,BE與AD交于點F,DE=CD.(1)求證:△ABF∽△CEB;(2)若△DEF的面積為2,求?ABCD的面積.18.(8分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點D是BC的中點,點P是AB上一動點(不與點B重合),延長PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當AP的值為時,四邊形PBEC是矩形;②當AP的值為時,四邊形PBEC是菱形.19.(8分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點D,過點D的直線交BC于點E,交AB的延長線于點P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長;(3)如圖②,點M是弧AB的中點,連結DM,交AB于點N.若tanA=12,求DN20.(8分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.21.(8分)如圖,將矩形OABC放在平面直角坐標系中,O為原點,點A在x軸的正半軸上,B(8,6),點D是射線AO上的一點,把△BAD沿直線BD折疊,點A的對應點為A′.(1)若點A′落在矩形的對角線OB上時,OA′的長=;(2)若點A′落在邊AB的垂直平分線上時,求點D的坐標;(3)若點A′落在邊AO的垂直平分線上時,求點D的坐標(直接寫出結果即可).22.(10分)如圖所示,拋物線y=x2+bx+c經過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).求拋物線的函數解析式;點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.23.(12分)已知關于x的一元二次方程x2﹣(2k+1)x+k2+k=1.(1)求證:方程有兩個不相等的實數根;(2)當方程有一個根為1時,求k的值.24.為進一步深化基教育課程改革,構建符合素質教育要求的學校課程體系,某學校自主開發了A書法、B閱讀,C足球,D器樂四門校本選修課程供學生選擇,每門課程被選到的機會均等.學生小紅計劃選修兩門課程,請寫出所有可能的選法;若學生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據旋轉的性質:對應點到旋轉中心的距離相等,逐一判斷即可.【詳解】解:連接OA、OM、ON、OP,根據旋轉的性質,點A的對應點到旋轉中心的距離與OA的長度應相等根據網格線和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴則點A不經過點P故選C.【點睛】此題考查的是旋轉的性質和勾股定理,掌握旋轉的性質:對應點到旋轉中心的距離相等和用勾股定理求線段的長是解決此題的關鍵.2、C【解析】根據旋轉的性質得,∠ABD=∠CBE=60°,∠E=∠C,則△ABD為等邊三角形,即AD=AB=BD,得∠ADB=60°因為∠ABD=∠CBE=60°,則∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故選C.3、D【解析】試題分析:x4x4=x8(同底數冪相乘,底數不變,指數相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算術平方根取正號);(a6)考點:1、冪的運算;2、完全平方公式;3、算術平方根.4、B【解析】
畫樹狀圖列出所有等可能結果,從中確定出甲、乙兩位游客恰好從同一個入口進入公園的結果數,再利用概率公式計算可得.【詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結果,其中甲、乙兩位游客恰好從同一個入口進入公園的結果有4種,所以甲、乙兩位游客恰好從同一個入口進入公園的概率為=,故選B.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.5、D【解析】解:設動車速度為每小時x千米,則可列方程為:﹣=.故選D.6、B【解析】
直接利用同底數冪的除法運算法則以及合并同類項法則、積的乘方運算法則分別化簡得出答案.【詳解】A、m3?m2=m5,故此選項錯誤;B、m5÷m3=m2(m≠0),故此選項正確;C、(m-2)3=m-6,故此選項錯誤;D、m4-m2,無法計算,故此選項錯誤;故選:B.【點睛】此題主要考查了同底數冪的除法運算以及合并同類項法則、積的乘方運算,正確掌握運算法則是解題關鍵.7、A【解析】
首先求出∠MPO=∠QON,利用AAS證明△PMO≌△ONQ,即可得到PM=ON,OM=QN,進而求出Q點坐標.【詳解】作圖如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P點坐標為(﹣4,2),∴Q點坐標為(2,4),故選A.【點睛】此題主要考查了旋轉的性質,以及全等三角形的判定和性質,關鍵是掌握旋轉后對應線段相等.8、A【解析】分析:根據B點的變化,確定平移的規律,將△ABC向右移5個單位、上移1個單位,然后確定A、C平移后的坐標即可.詳解:由點B(﹣4,1)的對應點B1的坐標是(1,2)知,需將△ABC向右移5個單位、上移1個單位,則點A(﹣1,3)的對應點A1的坐標為(4,4)、點C(﹣2,1)的對應點C1的坐標為(3,2),故選A.點睛:此題主要考查了平面直角坐標系中的平移,關鍵是根據已知點的平移變化總結出平移的規律.9、D【解析】
連接AC、CF,根據正方形性質求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點睛】本題考查了正方形的性質、勾股定理及直角三角形的面積,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.10、A【解析】
因為兩個數相乘之積為1,則這兩個數互為倒數,如果m的倒數是﹣1,則m=-1,然后再代入m2018計算即可.【詳解】因為m的倒數是﹣1,所以m=-1,所以m2018=(-1)2018=1,故選A.【點睛】本題主要考查倒數的概念和乘方運算,解決本題的關鍵是要熟練掌握倒數的概念和乘方運算法則.二、填空題(本大題共6個小題,每小題3分,共18分)11、6【解析】
點P在以O為圓心OA為半徑的圓上,P是兩個圓的交點,當⊙O與⊙M外切時,AB最小,根據條件求出AO即可求解;【詳解】解:點P在以O為圓心OA為半徑的圓上,∴P是兩個圓的交點,當⊙O與⊙M外切時,AB最小,∵⊙M的半徑為2,圓心M(3,4),∴PM=5,∴OA=3,∴AB=6,故答案為6;【點睛】本題考查圓與圓的位置關系;能夠將問題轉化為兩圓外切時AB最小是解題的關鍵.12、x≥1【解析】
把y=2代入y=x+1,得x=1,∴點P的坐標為(1,2),根據圖象可以知道當x≥1時,y=x+1的函數值不小于y=mx+n相應的函數值,因而不等式x+1≥mx+n的解集是:x≥1,故答案為x≥1.【點睛】本題考查了一次函數與不等式(組)的關系及數形結合思想的應用.解決此類問題關鍵是仔細觀察圖形,注意幾個關鍵點(交點、原點等),做到數形結合.13、45°【解析】試題解析:如圖,連接CE,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE和△GFE中∴△CDE≌△GFE(SAS),∴CE=GE,∠CED=∠GEF,故答案為14、<【解析】【分析】根據實數大小比較的方法進行比較即可得答案.【詳解】∵32=9,9<10,∴3<,故答案為:<.【點睛】本題考查了實數大小的比較,熟練掌握實數大小比較的方法是解題的關鍵.15、3.61×2【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】將361000000用科學記數法表示為3.61×2.故答案為3.61×2.16、﹣2【解析】
根據分式的運算法則即可得解.【詳解】原式===,故答案為:.【點睛】本題主要考查了同分母的分式減法,熟練掌握相關計算法則是解決本題的關鍵.三、解答題(共8題,共72分)17、(1)見解析;(2)16【解析】試題分析:(1)要證△ABF∽△CEB,需找出兩組對應角相等;已知了平行四邊形的對角相等,再利用AB∥CD,可得一對內錯角相等,則可證.(2)由于△DEF∽△EBC,可根據兩三角形的相似比,求出△EBC的面積,也就求出了四邊形BCDF的面積.同理可根據△DEF∽△AFB,求出△AFB的面積.由此可求出?ABCD的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形∴∠A=∠C,AB∥CD∴∠ABF=∠CEB∴△ABF∽△CEB(2)解:∵四邊形ABCD是平行四邊形∴AD∥BC,AB平行且等于CD∴△DEF∽△CEB,△DEF∽△ABF∵DE=CD∴,∵S△DEF=2S△CEB=18,S△ABF=8,∴S四邊形BCDF=S△BCE-S△DEF=16∴S四邊形ABCD=S四邊形BCDF+S△ABF=16+8=1.考點:1.相似三角形的判定與性質;2.三角形的面積;3.平行四邊形的性質.18、證明見解析;(2)①9;②12.5.【解析】
(1)根據對角線互相平分的四邊形為平行四邊形證明即可;(2)①若四邊形PBEC是矩形,則∠APC=90°,求得AP即可;②若四邊形PBEC是菱形,則CP=PB,求得AP即可.【詳解】∵點D是BC的中點,∴BD=CD.∵DE=PD,∴四邊形PBEC是平行四邊形;(2)①當∠APC=90°時,四邊形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴當AP的值為9時,四邊形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以設BC=4x,AB=5x,則(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.當PC=PB時,四邊形PBEC是菱形,此時點P為AB的中點,所以AP=12.5,∴當AP的值為12.5時,四邊形PBEC是菱形.【點睛】本題考查了菱形的判定、平行四邊形的判定和性質、矩形的判定,解題的關鍵是掌握特殊圖形的判定以及重要的性質.19、(1)見解析;(2)23π;(3)【解析】
(1)連結OD;由AB是⊙O的直徑,得到∠ADB=90°,根據等腰三角形的性質得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結論;(2)設∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據∠A+∠ABD=90o列方程求出x的值,進而可得到∠DOB=60o,然后根據弧長公式計算即可;(3)連結OM,過D作DF⊥AB于點F,然后證明△OMN∽△FDN,根據相似三角形的性質求解即可.【詳解】(1)連結OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長l=60·π·2(3)連結OM,過D作DF⊥AB于點F,∵點M是的中點,∴OM⊥AB,設BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN【點睛】本題是圓的綜合題,考查了切線的判定,圓周角定理及其推論,三角形外角的性質,含30°角的直角三角形的性質,弧長的計算,弧弦圓心角的關系,相似三角形的判定與性質.熟練掌握切線的判定方法是解(1)的關鍵,求出∠A=30o是解(2)的關鍵,證明△OMN∽△FDN是解(3)的關鍵.20、見解析【解析】
(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.21、(1)1;(2)點D(8﹣23,0);(3)點D的坐標為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點B的坐標知OA=8、AB=1、OB=10,根據折疊性質可得BA=BA′=1,據此可得答案;(Ⅱ)連接AA′,利用折疊的性質和中垂線的性質證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點D在OA上和點D在AO延長線上這兩種情況,利用相似三角形的判定和性質分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點D(8﹣23,0);(Ⅲ)①如圖3,當點D在OA上時.由旋轉知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當點D在AO延長線上時,過點A′作x軸的平行線交y軸于點M,延長AB交所作直線于點N,則BN=CM,MN=BC=OA=8,由旋轉知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點D的坐標為(﹣35﹣1,0).綜上,點D的坐標為(35﹣1,0)或(﹣35﹣1,0).點睛:本題主要考查四邊形的綜合問題,解題的關鍵是熟練掌握折疊變換的性質、矩形的性質、相似三角形的判定與性質及勾股定理等知識點.22、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點坐標(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】
(1)將A,B兩點坐標代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據解析式求出C點坐標,及頂點E的坐標,設點D的坐標為(0,m),作EF⊥y軸于點F,利用勾股定理表示出DC,DE的長.再建立相等關系式求出m值,進而求出D點坐標;(3)先根據邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當以C、D、P為頂點的三角形與△DOC相似時,根據對應邊不同進行分類討論:①當OC與CD是對應邊時,有比例式,能求出DP的值,又因為DE=DC,所以過點P作PG⊥y軸于點G,利用平行線分線段成比例定理即可求出DG,PG的長度,根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;②當OC與DP是對應邊時,有比例式,易求出DP,仍過點P作PG⊥y軸于點G,利用比例式求出DG,PG的長度,然后根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;這樣,直線DE上根據對應邊不同,點P所在位置不同,就得到了符合條件的4個P點坐標.【詳解】解:(1)∵拋物線y=x2+bx+c經過A(﹣1,0)、B(0,﹣3),∴,解得,故拋物線的函數解析式為y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則點C的坐標為(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴點E坐標為(1,﹣4),設點D的坐標為(0,m),作EF⊥y軸于點F(如下圖),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴點D的坐標為(0,﹣1);(3)∵點C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根據勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①當OC與CD是對應邊時,∵△DOC∽△PDC,∴,即=,解得DP=,過點P作PG⊥y軸于點G,則,即,解得DG=1,PG=,當點P在點D的左邊時,OG=DG﹣DO=1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025建筑工程承包合同模板大全
- 護理物品管理體系構建
- 結算政策培訓體系框架
- 公司交流培訓體系構建與實施策略
- 全科醫學科護理體系與實務
- 年會新員工發言稿模版
- 工程投標總結模版
- 2025年平凡的世界心得體會模版
- 眶緣骨折的臨床護理
- 幼兒園語言教育與活動設計 課件 第三章 幼兒園語言教育活動設計的原理
- 安徽省1號卷A10聯盟2025屆高三5月最后一卷數學試題及答案
- 北京2025年中國專利信息中心招聘14名社會在職人員筆試歷年參考題庫附帶答案詳解
- 無人機飛行器編程基本知識試題及答案
- 2024-2025部編版小學道德與法治二年級下冊期末考試卷及答案 (三套)
- 八年級數學題試卷及答案
- 2025-2030中國試管行業市場發展趨勢與前景展望戰略研究報告
- 2025年貴州省中考英語一模試題無答案
- 2025年物業管理從業人員考試試卷及答案
- 比亞迪新能源汽車業務競爭戰略:基于全產業鏈優勢的多維剖析與展望
- 河北檢察院試題及答案
- 四川省成都市青羊區2025年中考語文二診試卷(含答案)
評論
0/150
提交評論