




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.把拋物線y=﹣2x2向上平移1個單位,再向右平移1個單位,得到的拋物線是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣12.當a>0時,下列關于冪的運算正確的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a53.一次函數y=2x+1的圖像不經過(
)A.第一象限B.第二象限C.第三象限D.第四象限4.正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數是()A.36° B.54° C.72° D.108°5.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm6.小蘇和小林在如圖①所示的跑道上進行米折返跑.在整個過程中,跑步者距起跑線的距離(單位:)與跑步時間(單位:)的對應關系如圖②所示.下列敘述正確的是().A.兩人從起跑線同時出發,同時到達終點B.小蘇跑全程的平均速度大于小林跑全程的平均速度C.小蘇前跑過的路程大于小林前跑過的路程D.小林在跑最后的過程中,與小蘇相遇2次7.某美術社團為練習素描,他們第一次用120元買了若干本相同的畫冊,第二次用240元在同一家商店買與上一次相同的畫冊,這次商家每本優惠4元,結果比上次多買了20本.求第一次買了多少本畫冊?設第一次買了x本畫冊,列方程正確的是()A. B.C. D.8.如圖,在下列條件中,不能判定直線a與b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°9.根據文化和旅游部發布的《“五一”假日旅游指南》,今年“五一”期間居民出游意愿達36.6%,預計“五一”期間全固有望接待國內游客1.49億人次,實現國內旅游收入880億元.將880億用科學記數法表示應為()A.8×107 B.880×108 C.8.8×109 D.8.8×101010.下列各數中,相反數等于本身的數是()A.–1 B.0 C.1 D.2二、填空題(共7小題,每小題3分,滿分21分)11.已知一個斜坡的坡度,那么該斜坡的坡角的度數是______.12.已知一個正數的平方根是3x-2和5x-6,則這個數是_____.13.已知二次函數的圖像與軸交點的橫坐標是和,且,則________.14.如果分式的值為0,那么x的值為___________.15.已知一組數據-3,x,-2,3,1,6的眾數為3,則這組數據的中位數為______.16.分解因式:___.17.如圖,直線l經過⊙O的圓心O,與⊙O交于A、B兩點,點C在⊙O上,∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于點Q,且PQ=OQ,則滿足條件的∠OCP的大小為_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結BD、AD.求證;∠BDC=∠A.若∠C=45°,⊙O的半徑為1,直接寫出AC的長.19.(5分)如圖,Rt△ABC的兩直角邊AC邊長為4,BC邊長為3,它的內切圓為⊙O,⊙O與邊AB、BC、AC分別相切于點D、E、F,延長CO交斜邊AB于點G.(1)求⊙O的半徑長;(2)求線段DG的長.20.(8分)如圖所示,拋物線y=x2+bx+c經過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).求拋物線的函數解析式;點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.21.(10分)將二次函數的解析式化為的形式,并指出該函數圖象的開口方向、頂點坐標和對稱軸.22.(10分)如圖,AB是⊙O的直徑,點C在⊙O上,CE^AB于E,CD平分DECB,交過點B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.23.(12分)先化簡,再求值:,其中m=2.24.(14分)為加快城鄉對接,建設全域美麗鄉村,某地區對A、B兩地間的公路進行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地大約要走多少千米?開通隧道后,汽車從A地到B地大約可以少走多少千米?(結果精確到0.1千米)(參考數據:≈1.41,≈1.73)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
∵函數y=-2x2的頂點為(0,0),∴向上平移1個單位,再向右平移1個單位的頂點為(1,1),∴將函數y=-2x2的圖象向上平移1個單位,再向右平移1個單位,得到拋物線的解析式為y=-2(x-1)2+1,故選B.【點睛】二次函數的平移不改變二次項的系數;關鍵是根據上下平移改變頂點的縱坐標,左右平移改變頂點的橫坐標得到新拋物線的頂點.2、A【解析】
直接利用零指數冪的性質以及負指數冪的性質、冪的乘方運算法則分別化簡得出答案.【詳解】A選項:a0=1,正確;B選項:a﹣1=,故此選項錯誤;C選項:(﹣a)2=a2,故此選項錯誤;D選項:(a2)3=a6,故此選項錯誤;故選A.【點睛】考查了零指數冪的性質以及負指數冪的性質、冪的乘方運算,正確掌握相關運算法則是解題關鍵.3、D【解析】
根據一次函數的系數判斷出函數圖象所經過的象限,由k=2>0,b=1>0可知,一次函數y=2x+1的圖象過一、二、三象限.另外此題還可以通過直接畫函數圖象來解答.【詳解】∵k=2>0,b=1>0,∴根據一次函數圖象的性質即可判斷該函數圖象經過一、二、三象限,不經過第四象限.故選D.【點睛】本題考查一次函數圖象與系數的關系,解決此類題目的關鍵是確定k、b的正負.4、C【解析】正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數是=72度,故選C.5、A【解析】
過點P作PD⊥OB于D,根據角平分線上的點到角的兩邊距離相等可得PC=PD,再根據垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.【點睛】考查了角平分線上的點到角的兩邊距離相等的性質,垂線段最短的性質,熟記性質是解題的關鍵.6、D【解析】
A.由圖可看出小林先到終點,A錯誤;B.全程路程一樣,小林用時短,所以小林的平均速度大于小蘇的平均速度,B錯誤;C.第15秒時,小蘇距離起點較遠,兩人都在返回起點的過程中,據此可判斷小林跑的路程大于小蘇跑的路程,C錯誤;D.由圖知兩條線的交點是兩人相遇的點,所以是相遇了兩次,正確.故選D.7、A【解析】分析:由設第一次買了x本資料,則設第二次買了(x+20)本資料,由等量關系:第二次比第一次每本優惠4元,即可得到方程.詳解:設他上月買了x本筆記本,則這次買了(x+20)本,根據題意得:.故選A.點睛:本題考查了分式方程的應用,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列方程解答即可.8、C【解析】
解:A.∵∠1與∠2是直線a,b被c所截的一組同位角,∴∠1=∠2,可以得到a∥b,∴不符合題意B.∵∠2與∠3是直線a,b被c所截的一組內錯角,∴∠2=∠3,可以得到a∥b,∴不符合題意,C.∵∠3與∠5既不是直線a,b被任何一條直線所截的一組同位角,內錯角,∴∠3=∠5,不能得到a∥b,∴符合題意,D.∵∠3與∠4是直線a,b被c所截的一組同旁內角,∴∠3+∠4=180°,可以得到a∥b,∴不符合題意,故選C.【點睛】本題考查平行線的判定,難度不大.9、D【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】880億=88000000000=8.8×1010,
故選D.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.10、B【解析】
根據相反數的意義,只有符號不同的數為相反數.【詳解】解:相反數等于本身的數是1.故選B.【點睛】本題考查了相反數的意義.注意掌握只有符號不同的數為相反數,1的相反數是1.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
坡度=坡角的正切值,據此直接解答.【詳解】解:∵,∴坡角=30°.【點睛】此題主要考查學生對坡度及坡角的理解及掌握.12、【解析】
試題解析:根據題意,得:解得:故答案為【點睛】:一個正數有2個平方根,它們互為相反數.13、-12【解析】
令y=0,得方程,和即為方程的兩根,利用根與系數的關系求得和,利用完全平方式并結合即可求得k的值.【詳解】解:∵二次函數的圖像與軸交點的橫坐標是和,令y=0,得方程,則和即為方程的兩根,∴,,∵,兩邊平方得:,∴,即,解得:,故答案為:.【點睛】本題考查了一元二次方程與二次函數的關系,函數與x軸的交點的橫坐標就是方程的根,解題的關鍵是利用根與系數的關系,整體代入求解.14、4【解析】
∵,∴x-4=0,x+2≠0,解得:x=4,故答案為4.15、【解析】分析:找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不只一個.
詳解:∵-3,x,-1,3,1,6的眾數是3,
∴x=3,
先對這組數據按從小到大的順序重新排序-3、-1、1、3、3、6位于最中間的數是1,3,
∴這組數的中位數是=1.
故答案為:1.點睛:本題屬于基礎題,考查了確定一組數據的中位數和眾數的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數,如果數據有奇數個,則正中間的數字即為所求,如果是偶數個則找中間兩位數的平均數.16、【解析】
先提取公因式,再利用平方差公式分解因式即可.【詳解】故答案為:.【點睛】本題考查了分解因式,熟練掌握因式法、公式法、十字相乘法、分組分解法的區別,根據題目選擇合適的方法是解題的關鍵.17、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)1+【解析】
(1)連接OD,結合切線的性質和直徑所對的圓周角性質,利用等量代換求解(2)根據勾股定理先求OC,再求AC.【詳解】(1)證明:連結.如圖,與相切于點D,是的直徑,即(2)解:在中,.【點睛】此題重點考查學生對圓的認識,熟練掌握圓的性質是解題的關鍵.19、(1)1;(2)【解析】(1)由勾股定理求AB,設⊙O的半徑為r,則r=(AC+BC-AB)求解;(2)過G作GP⊥AC,垂足為P,根據CG平分直角∠ACB可知△PCG為等腰直角三角形,設PG=PC=x,則CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.試題解析:(1)在Rt△ABC中,由勾股定理得AB==5,∴☉O的半徑r=(AC+BC-AB)=(4+3-5)=1;(2)過G作GP⊥AC,垂足為P,設GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴=,解得x=,即GP=,CG=,∴OG=CG-CO=-=,在Rt△ODG中,DG==.20、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點坐標(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】
(1)將A,B兩點坐標代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據解析式求出C點坐標,及頂點E的坐標,設點D的坐標為(0,m),作EF⊥y軸于點F,利用勾股定理表示出DC,DE的長.再建立相等關系式求出m值,進而求出D點坐標;(3)先根據邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當以C、D、P為頂點的三角形與△DOC相似時,根據對應邊不同進行分類討論:①當OC與CD是對應邊時,有比例式,能求出DP的值,又因為DE=DC,所以過點P作PG⊥y軸于點G,利用平行線分線段成比例定理即可求出DG,PG的長度,根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;②當OC與DP是對應邊時,有比例式,易求出DP,仍過點P作PG⊥y軸于點G,利用比例式求出DG,PG的長度,然后根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;這樣,直線DE上根據對應邊不同,點P所在位置不同,就得到了符合條件的4個P點坐標.【詳解】解:(1)∵拋物線y=x2+bx+c經過A(﹣1,0)、B(0,﹣3),∴,解得,故拋物線的函數解析式為y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則點C的坐標為(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴點E坐標為(1,﹣4),設點D的坐標為(0,m),作EF⊥y軸于點F(如下圖),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴點D的坐標為(0,﹣1);(3)∵點C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根據勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①當OC與CD是對應邊時,∵△DOC∽△PDC,∴,即=,解得DP=,過點P作PG⊥y軸于點G,則,即,解得DG=1,PG=,當點P在點D的左邊時,OG=DG﹣DO=1﹣1=0,所以點P(﹣,0),當點P在點D的右邊時,OG=DO+DG=1+1=2,所以,點P(,﹣2);②當OC與DP是對應邊時,∵△DOC∽△CDP,∴,即=,解得DP=3,過點P作PG⊥y軸于點G,則,即,解得DG=9,PG=3,當點P在點D的左邊時,OG=DG﹣OD=9﹣1=8,所以,點P的坐標是(﹣3,8),當點P在點D的右邊時,OG=OD+DG=1+9=10,所以,點P的坐標是(3,﹣10),綜上所述,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,滿足條件的點P共有4個,其坐標分別為(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).考點:1.相似三角形的判定與性質;2.二次函數動點問題;3.一次函數與二次函數綜合題.21、開口方向:向上;點坐標:(-1,-3);稱軸:直線.【解析】
將二次函數一般式化為頂點式,再根據a的值即可確定該函數圖像的開口方向、頂點坐標和對稱軸.【詳解】解:,,,∴開口方向:向上,頂點坐標:(-1,-3),對稱軸:直線.【點睛】熟練掌握將一般式化為頂點式是解題關鍵.22、(1)證明見解析;(2)1.【解析】試題分析:(1)根據垂直的定義可得∠CEB=90°,然后根據角平分線的性質和等腰三角形的性質,判斷出∠1=∠D,從而根據平行線的判定得到CE∥BD,根據平行線的性質得∠DBA=∠CEB,由此可根據切線的判定得證結果;(2)連接AC,由射影定理可得CE試題解析:(1)證明:∵CE⊥AB,∴∠CEB=90∵CD平分∠ECB,BC=BD,∴∠1=∠2,∠2=∠D.∴∠1=∠D.∴CE∥BD.∴∠DBA=∠CEB=90∵AB是⊙O的直徑,∴BD是⊙O的切線.(2)連接AC,∵AB是⊙
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025離婚協議書涉及的稅務問題
- 電力工程施工合同解除協議書范文
- 軟件開發合同條款措施
- 代謝通路優化與生物制造創新-洞察闡釋
- 二手豪華車贈與及檢驗合同范本
- 深度合作項目現場總監聘用協議書正本
- 車輛牌照租賃與停車服務綜合合同
- 旅游線路策劃合作協議
- 跨國采購合同與國際銷售合同差異分析
- 離婚彩禮返還及財產分割執行細則協議書
- 大學生新材料項目創業計劃書
- 2025年中級銀行從業資格考試《銀行業法律法規與綜合能力》新版真題卷(附答案)
- 2025年蘇教版科學小學四年級下冊期末檢測題附答案(二)
- 《法律文書情境訓練》課件-第一審民事判決書的寫作(下)
- 汽車定點洗車協議書
- 2025年中國水資源專用機械市場供需預測及投資可行性報告
- 2025湖南中考:語文必背知識點
- 內蒙古鑫元硅材料科技有限公司年產10萬噸顆粒硅綠色升級項報告書
- 2025年青海西寧事業單位(行測)考試筆試試題(含答案)
- 2025央國企CIO選型指南-ERP產品
- 2025內蒙古工程咨詢監理有限責任公司招聘監理項目儲備庫人員400人筆試參考題庫附帶答案詳解
評論
0/150
提交評論