江蘇省無錫市惠山、玉祁、錢橋2023學年中考數學猜題卷含解析及點睛_第1頁
江蘇省無錫市惠山、玉祁、錢橋2023學年中考數學猜題卷含解析及點睛_第2頁
江蘇省無錫市惠山、玉祁、錢橋2023學年中考數學猜題卷含解析及點睛_第3頁
江蘇省無錫市惠山、玉祁、錢橋2023學年中考數學猜題卷含解析及點睛_第4頁
江蘇省無錫市惠山、玉祁、錢橋2023學年中考數學猜題卷含解析及點睛_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖形是由同樣大小的棋子按照一定規律排列而成的,其中,圖①中有5個棋子,圖②中有10個棋子,圖③中有16個棋子,…,則圖⑥________中有個棋子()A.31 B.35 C.40 D.502.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側面積是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm23.若一個三角形的兩邊長分別為5和7,則該三角形的周長可能是()A.12 B.14 C.15 D.254.正三角形繞其中心旋轉一定角度后,與自身重合,旋轉角至少為()A.30° B.60° C.120° D.180°5.下列圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.6.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y67.據統計,2015年廣州地鐵日均客運量均為人次,將用科學記數法表示為()A. B. C. D.8.將拋物線y=A.y=-12C.y=-129.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.610.將某不等式組的解集表示在數軸上,下列表示正確的是()A. B.C. D.11.如圖,在△ABC中,DE∥BC,若,則等于()A. B. C. D.12.我國作家莫言獲得諾貝爾文學獎之后,他的代表作品《蛙》的銷售量就比獲獎之前增長了180倍,達到2100000冊.把2100000用科學記數法表示為()A.0.21×108 B.21×106 C.2.1×107 D.2.1×106二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某航班每次飛行約有111名乘客,若飛機失事的概率為p=1.11115,一家保險公司要為乘客保險,許諾飛機一旦失事,向每位乘客賠償41萬元人民幣.平均來說,保險公司應向每位乘客至少收取_____元保險費才能保證不虧本.14.如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.15.已知一個多邊形的每一個外角都等于,則這個多邊形的邊數是.16.若am=5,an=6,則am+n=________.17.如圖,圓錐的表面展開圖由一扇形和一個圓組成,已知圓的面積為100π,扇形的圓心角為120°,這個扇形的面積為.18.在平面直角坐標系xOy中,將拋物線y=3(x+2)2-1平移后得到拋物線y=3x2+2.請你寫出一種平移方法.答:________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(A在B的左側),其中點B(3,0),與y軸交于點C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(包括△OBC的邊界),求h的取值范圍;(3)設點P是拋物線上且在x軸上方的任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.20.(6分)濟南某中學在參加“創文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數量進行了分析統計,制作了兩幅不完整的統計圖.請根據以上信息,回答下列問題:(l)楊老師采用的調查方式是______(填“普查”或“抽樣調查”);(2)請補充完整條形統計圖,并計算扇形統計圖中C班作品數量所對應的圓心角度數______.(3)請估計全校共征集作品的件數.(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學生性別相同的概率.21.(6分)如圖,直線y=x+2與雙曲線y=相交于點A(m,3),與x軸交于點C.求雙曲線的解析式;點P在x軸上,如果△ACP的面積為3,求點P的坐標.22.(8分)解不等式組.23.(8分)在△ABC中,AB=AC,∠BAC=α,點P是△ABC內一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關系.(1)當α=60°時,將△ABP繞點A逆時針旋轉60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關系為;(2)如圖2,當α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關系,并給出證明;(3)PA、PB、PC滿足的等量關系為.24.(10分)在正方形ABCD中,動點E,F分別從D,C兩點同時出發,以相同的速度在直線DC,CB上移動.(1)如圖1,當點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數量關系和位置關系,并說明理由;(2)如圖2,當E,F分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,請你直接寫出△ACE為等腰三角形時CE:CD的值;(3)如圖3,當E,F分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.25.(10分)計算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.26.(12分)已知C為線段上一點,關于x的兩個方程與的解分別為線段的長,當時,求線段的長;若C為線段的三等分點,求m的值.27.(12分)在“母親節”期間,某校部分團員參加社會公益活動,準備購進一批許愿瓶進行銷售,并將所得利潤捐給慈善機構.根據市場調查,這種許愿瓶一段時間內的銷售量y(個)于銷售單價x(元/個)之間的對應關系如圖所示.試判斷y與x之間的函數關系,并求出函數關系式;若許愿瓶的進價為6元/個,按照上述市場調查銷售規律,求利潤w(元)與銷售單價x(元/個)之間的函數關系式;若許愿瓶的進貨成本不超過900元,要想獲得最大利潤,試求此時這種許愿瓶的銷售單價,并求出最大利潤.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據題意得出第n個圖形中棋子數為1+2+3+…+n+1+2n,據此可得.【詳解】解:∵圖1中棋子有5=1+2+1×2個,圖2中棋子有10=1+2+3+2×2個,圖3中棋子有16=1+2+3+4+3×2個,…∴圖6中棋子有1+2+3+4+5+6+7+6×2=40個,故選C.【點睛】本題考查了圖形的變化規律,通過從一些特殊的圖形變化中發現不變的因素或按規律變化的因素,然后推廣到一般情況.2、C【解析】圓錐的側面積=底面周長×母線長÷2,把相應數值代入,圓錐的側面積=2π×2×5÷2=10π.故答案為C3、C【解析】

先根據三角形三條邊的關系求出第三條邊的取值范圍,進而求出周長的取值范圍,從而可的求出符合題意的選項.【詳解】∴三角形的兩邊長分別為5和7,∴2<第三條邊<12,∴5+7+2<三角形的周長<5+7+12,即14<三角形的周長<24,故選C.【點睛】本題考查了三角形三條邊的關系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,據此解答即可.4、C【解析】

求出正三角形的中心角即可得解【詳解】正三角形繞其中心旋轉一定角度后,與自身重合,旋轉角至少為120°,故選C.【點睛】本題考查旋轉對稱圖形的概念:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角,掌握正多邊形的中心角的求解是解題的關鍵5、B【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

B、是軸對稱圖形,也是中心對稱圖形,故此選項正確;

C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;

D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.

故選B.【點睛】考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.6、D【解析】

根據合并同類項的法則,積的乘方,完全平方公式,同底數冪的乘法的性質,對各選項分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點睛】考查了整式的運算能力,對于相關的整式運算法則要求學生很熟練,才能正確求出結果.7、D【解析】

科學記數法就是將一個數字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數.n為整數位數減1,即從左邊第一位開始,在首位非零的后面加上小數點,再乘以10的n次冪.【詳解】解:6

590

000=6.59×1.故選:D.【點睛】本題考查學生對科學記數法的掌握,一定要注意a的形式,以及指數n的確定方法.8、D【解析】

將拋物線y=12【詳解】由題意得,a=-12設旋轉180°以后的頂點為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉180°以后的頂點為(2,1),∴旋轉180°以后所得圖象的解析式為:y=-1故選D.【點睛】本題考查了二次函數圖象的旋轉變換,在繞拋物線某點旋轉180°以后,二次函數的開口大小沒有變化,方向相反;設旋轉前的的頂點為(x,y),旋轉中心為(a,b),由中心對稱的性質可知新頂點坐標為(2a-x,2b-y),從而可求出旋轉后的函數解析式.9、C【解析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據全等三角形的性質可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質;矩形的性質;勾股定理;銳角三角函數.10、B【解析】分析:本題可根據數軸的性質畫出數軸:實心圓點包括該點用“≥”,“≤”表示,空心圓點不包括該點用“<”,“>”表示,大于向右小于向左.點睛:不等式組的解集為?1?x<3在數軸表示?1和3以及兩者之間的部分:故選B.點睛:本題考查在數軸上表示不等式解集:把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.11、C【解析】試題解析::∵DE∥BC,∴,故選C.考點:平行線分線段成比例.12、D【解析】2100000=2.1×106.點睛:對于一個絕對值較大的數,用科學記數法寫成的形式,其中,n是比原整數位數少1的數.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、21【解析】每次約有111名乘客,如飛機一旦失事,每位乘客賠償41萬人民幣,共計4111萬元,由題意可得一次飛行中飛機失事的概率為P=1.11115,所以賠償的錢數為41111111×1.11115=2111元,即可得至少應該收取保險費每人=21元.14、5【解析】

作輔助線,構建全等三角形和高線DH,設CM=a,根據等腰直角三角形的性質和三角函數表示AC和AM的長,根據三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構建全等三角形和高線DH,設CM=a,根據等腰直角三角形的性質和三角函數表示AC和AM的長,根據三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據AM=AG+MG,列方程可得結論.,AG=CH=a+,根據AM=AG+MG,列方程可得結論.【詳解】解:過D作DH⊥BC于H,過A作AM⊥BC于M,過D作DG⊥AM于G,設CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC?DH=10,?2a?DH=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四邊形DHMG為矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或?5(舍),故答案為5.【點睛】本題考查了等腰三角形的判定與性質、全等三角形的判定與性質、三角形面積的計算;證明三角形全等得出AG=CH是解決問題的關鍵,并利用方程的思想解決問題.15、5【解析】

∵多邊形的每個外角都等于72°,∵多邊形的外角和為360°,∴360°÷72°=5,∴這個多邊形的邊數為5.故答案為5.16、1.【解析】

根據同底數冪乘法性質am·an=am+n,即可解題.【詳解】解:am+n=am·an=5×6=1.【點睛】本題考查了同底數冪乘法計算,屬于簡單題,熟悉法則是解題關鍵.17、300π【解析】試題分析:首先根據底面圓的面積求得底面的半徑,然后結合弧長公式求得扇形的半徑,然后利用扇形的面積公式求得側面積即可.∵底面圓的面積為100π,∴底面圓的半徑為10,∴扇形的弧長等于圓的周長為20π,設扇形的母線長為r,則=20π,解得:母線長為30,∴扇形的面積為πrl=π×10×30=300π考點:(1)、圓錐的計算;(2)、扇形面積的計算18、答案不唯一【解析】分析:把y改寫成頂點式,進而解答即可.詳解:y先向右平移2個單位長度,再向上平移3個單位得到拋物線.故答案為y先向右平移2個單位長度,再向上平移3個單位得到拋物線.點睛:本題考查了二次函數圖象與幾何變換:先把二次函數的解析式配成頂點式為y=a(x-)2+,然后把拋物線的平移問題轉化為頂點的平移問題.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】

(1)拋物線的對稱軸x=1、B(3,0)、A在B的左側,根據二次函數圖象的性質可知A(-1,0);根據拋物線y=ax2+bx+c過點C(0,3),可知c的值.結合A、B兩點的坐標,利用待定系數法求出a、b的值,可得拋物線L的表達式;(2)由C、B兩點的坐標,利用待定系數法可得CB的直線方程.對拋物線配方,還可進一步確定拋物線的頂點坐標;通過分析h為何值時拋物線頂點落在BC上、落在OB上,就能得到拋物線的頂點落在△OBC內(包括△OBC的邊界)時h的取值范圍.(3)設P(m,﹣m2+2m+3),過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,通過證明△BNP≌△PMQ求解即可.【詳解】(1)把點B(3,0),點C(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即拋物線的對稱軸是:x=1,設原拋物線的頂點為D,∵點B(3,0),點C(0,3).易得BC的解析式為:y=﹣x+3,當x=1時,y=2,如圖1,當拋物線的頂點D(1,2),此時點D在線段BC上,拋物線的解析式為:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,當拋物線的頂點D(1,0),此時點D在x軸上,拋物線的解析式為:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范圍是2≤h≤4;(3)設P(m,﹣m2+2m+3),如圖2,△PQB是等腰直角三角形,且PQ=PB,過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(圖3)或m2=1,∴P(1,4)或(0,3).【點睛】本題主要考查了待定系數法求二次函數和一次函數的解析式、二次函數的圖象與性質、二次函數與一元二次方程的聯系、全等三角形的判定與性質等知識點.解(1)的關鍵是掌握待定系數法,解(2)的關鍵是分頂點落在BC上和落在OB上求出h的值,解(3)的關鍵是證明△BNP≌△PMQ.20、(1)抽樣調查(2)150°(3)180件(4)【解析】分析:(1)楊老師從全校30個班中隨機抽取了4個班,屬于抽樣調查.(2)由題意得:所調查的4個班征集到的作品數為:6÷=24(件),C班作品的件數為:24-4-6-4=10(件);繼而可補全條形統計圖;(3)先求出抽取的4個班每班平均征集的數量,再乘以班級總數可得;(4)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩名學生性別相同的情況,再利用概率公式即可求得答案.詳解:(1)楊老師從全校30個班中隨機抽取了4個班,屬于抽樣調查.故答案為抽樣調查.(2)所調查的4個班征集到的作品數為:6÷=24件,C班有24﹣(4+6+4)=10件,補全條形圖如圖所示,扇形統計圖中C班作品數量所對應的圓心角度數360°×=150°;故答案為150°;(3)∵平均每個班=6件,∴估計全校共征集作品6×30=180件.(4)畫樹狀圖得:∵共有20種等可能的結果,兩名學生性別相同的有8種情況,∴恰好選取的兩名學生性別相同的概率為.點睛:本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.同時古典概型求法:(1)算出所有基本事件的個數n;(2)求出事件A包含的所有基本事件數m;(3)代入公式P(A)=,求出P(A)..21、(1)(2)(-6,0)或(-2,0).【解析】分析:(1)把A點坐標代入直線解析式可求得m的值,則可求得A點坐標,再把A點坐標代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設P(t,0),則可表示出PC的長,進一步表示出△ACP的面積,可得到關于t的方程,則可求得P點坐標.詳解:(1)把A點坐標代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A點也在雙曲線上,∴k=2×3=6,∴雙曲線解析式為y=;(2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵點P在x軸上,∴可設P點坐標為(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面積為3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P點坐標為(﹣6,0)或(﹣2,0).點睛:本題主要考查函數圖象的交點,掌握函數圖象的交點坐標滿足每個函數解析式是解題的關鍵.22、x<﹣1.【解析】分析:按照解一元一次不等式組的一般步驟解答即可.詳解:,由①得x≤1,由②得x<﹣1,∴原不等式組的解集是x<﹣1.點睛:“熟練掌握一元一次不等式組的解法”是正確解答本題的關鍵.23、(1)150,(1)證明見解析(3)【解析】

(1)根據旋轉變換的性質得到△PAP′為等邊三角形,得到∠P′PC=90°,根據勾股定理解答即可;(1)如圖1,作將△ABP繞點A逆時針旋轉110°得到△ACP′,連接PP′,作AD⊥PP′于D,根據余弦的定義得到PP′=PA,根據勾股定理解答即可;(3)與(1)類似,根據旋轉變換的性質、勾股定理和余弦、正弦的關系計算即可.試題解析:【詳解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋轉變換的性質可知,∠PAP′=60°,P′C=PB,∴△PAP′為等邊三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案為150,PA1+PC1=PB1;(1)如圖,作°,使,連接,.過點A作AD⊥于D點.∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如圖1,與(1)的方法類似,作將△ABP繞點A逆時針旋轉α得到△ACP′,連接PP′,作AD⊥PP′于D,由旋轉變換的性質可知,∠PAP′=α,P′C=PB,∴∠APP′=90°-,∵∠PAC+∠PCA=,∴∠APC=180°-,∴∠P′PC=(180°-)-(90°-)=90°,∴PP′1+PC1=P′C1,∵∠APP′=90°-,∴PD=PA?cos(90°-)=PA?sin,∴PP′=1PA?sin,∴4PA1sin1+PC1=PB1,故答案為4PA1sin1+PC1=PB1.【點睛】本題考查的是旋轉變換的性質、等邊三角形的性質、勾股定理的應用,掌握等邊三角形的性質、旋轉變換的性質、靈活運用類比思想是解題的關鍵.24、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據正方形的性質,由SAS先證得△ADE≌△DCF.由全等三角形的性質得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當AC=CE時,設正方形ABCD的邊長為a,由勾股定理求出AC=CE=a即可;②當AE=AC時,設正方形的邊長為a,由勾股定理求出AC=AE=a,根據正方形的性質知∠ADC=90°,然后根據等腰三角形的性質得出DE=CD=a即可;(3)由(1)(2)知:點P的路徑是一段以AD為直徑的圓,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最大,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動點E,F分別從D,C兩點同時出發,以相同的速度在直線DC,CB上移動,∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的結論還成立,有兩種情況:①如圖1,當AC=CE時,設正方形ABCD的邊長為a,由勾股定理得,,則;②如圖2,當AE=AC時,設正方形ABCD的邊長為a,由勾股定理得:,∵四邊形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵點P在運動中保持∠APD=90°,∴點P的路徑是以AD為直徑的圓,如圖3,設AD的中點為Q

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論