2023學年江西省余干初中數學畢業考試模擬沖刺卷含解析及點睛_第1頁
2023學年江西省余干初中數學畢業考試模擬沖刺卷含解析及點睛_第2頁
2023學年江西省余干初中數學畢業考試模擬沖刺卷含解析及點睛_第3頁
2023學年江西省余干初中數學畢業考試模擬沖刺卷含解析及點睛_第4頁
2023學年江西省余干初中數學畢業考試模擬沖刺卷含解析及點睛_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在數軸上標注了四段范圍,如圖,則表示的點落在()A.段① B.段② C.段③ D.段④2.如圖,若AB∥CD,則α、β、γ之間的關系為()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°3.下列運算正確的是()A.5ab﹣ab=4 B.a6÷a2=a4C. D.(a2b)3=a5b34.近兩年,中國倡導的“一帶一路”為沿線國家創造了約180000個就業崗位,將180000用科學記數法表示為()A.1.8×105 B.1.8×104 C.0.18×106 D.18×1045.如圖是一個由4個相同的正方體組成的立體圖形,它的左視圖為()A. B. C. D.6.用6個相同的小正方體搭成一個幾何體,若它的俯視圖如圖所示,則它的主視圖不可能是()A. B. C. D.7.下列運算正確的是()A.a2+a3=a5 B.(a3)2÷a6=1 C.a2?a3=a6 D.(2+3)2=58.在0,π,﹣3,0.6,這5個實數中,無理數的個數為()A.1個 B.2個 C.3個 D.4個9.計算的結果是(

)A. B. C. D.210.向某一容器中注水,注滿為止,表示注水量與水深的函數關系的圖象大致如圖所示,則該容器可能是()A. B.C. D.11.如圖,數軸上表示的是下列哪個不等式組的解集()A. B. C. D.12.如圖,兩個一次函數圖象的交點坐標為,則關于x,y的方程組的解為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某學校組織學生到首鋼西十冬奧廣場開展綜合實踐活動,數學小組的同學們在距奧組委辦公樓(原首鋼老廠區的筒倉)20m的點B處,用高為0.8m的測角儀測得筒倉頂點C的仰角為63°,則筒倉CD的高約為______m.(精確到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)14.如圖,、分別為△ABC的邊、延長線上的點,且DE∥BC.如果,CE=16,那么AE的長為_______15.因式分解:x2y-4y3=________.16.如圖,某水庫大壩的橫斷面是梯形,壩頂寬米,壩高是20米,背水坡的坡角為30°,迎水坡的坡度為1∶2,那么壩底的長度等于________米(結果保留根號)17.閱讀以下作圖過程:第一步:在數軸上,點O表示數0,點A表示數1,點B表示數5,以AB為直徑作半圓(如圖);第二步:以B點為圓心,1為半徑作弧交半圓于點C(如圖);第三步:以A點為圓心,AC為半徑作弧交數軸的正半軸于點M.請你在下面的數軸中完成第三步的畫圖(保留作圖痕跡,不寫畫法),并寫出點M表示的數為______.18.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.20.(6分)某制衣廠某車間計劃用10天加工一批出口童裝和成人裝共360件,該車間的加工能力是:每天能單獨加工童裝45件或成人裝30件.(1)該車間應安排幾天加工童裝,幾天加工成人裝,才能如期完成任務;(2)若加工童裝一件可獲利80元,加工成人裝一件可獲利120元,那么該車間加工完這批服裝后,共可獲利多少元.21.(6分)如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,點A的坐標為(﹣1,0),拋物線的對稱軸直線x=交x軸于點D.(1)求拋物線的解析式;(2)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,交x軸于點G,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標;(3)在(2)的條件下,將線段FG繞點G順時針旋轉一個角α(0°<α<90°),在旋轉過程中,設線段FG與拋物線交于點N,在線段GB上是否存在點P,使得以P、N、G為頂點的三角形與△ABC相似?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.22.(8分)如圖,在中,,為邊上的中線,于點E.求證:;若,,求線段的長.23.(8分)一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現從中任意摸出一個球是紅球的概率為.(1)求口袋中黃球的個數;(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;24.(10分)在一次數學活動課上,老師讓同學們到操場上測量旗桿的高度,然后回來交流各自的測量方法.小芳的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認為這種測量方法是否可行?請說明理由.25.(10分)如圖,AB是⊙O的直徑,⊙O過BC的中點D,DE⊥AC.求證:△BDA∽△CED.26.(12分)某公司今年1月份的生產成本是400萬元,由于改進技術,生產成本逐月下降,3月份的生產成本是361萬元.假設該公司2、3、4月每個月生產成本的下降率都相同.求每個月生產成本的下降率;請你預測4月份該公司的生產成本.27.(12分)如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂部D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.(1)求∠BCD的度數.(2)求教學樓的高BD.(結果精確到0.1m,參考數據:tan20°≈0.36,tan18°≈0.32)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,所以應在③段上.故選C考點:實數與數軸的關系2、C【解析】

過點E作EF∥AB,如圖,易得CD∥EF,然后根據平行線的性質可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,進一步即得結論.【詳解】解:過點E作EF∥AB,如圖,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故選:C.【點睛】本題考查了平行公理的推論和平行線的性質,屬于常考題型,作EF∥AB、熟練掌握平行線的性質是解題的關鍵.3、B【解析】

由整數指數冪和分式的運算的法則計算可得答案.【詳解】A項,根據單項式的減法法則可得:5ab-ab=4ab,故A項錯誤;B項,根據“同底數冪相除,底數不變,指數相減”可得:a6÷a2=a4,故B項正確;C項,根據分式的加法法則可得:,故C項錯誤;D項,根據“積的乘方等于乘方的積”可得:,故D項錯誤;故本題正確答案為B.【點睛】冪的運算法則:(1)同底數冪的乘法:(m、n都是正整數)(2)冪的乘方:(m、n都是正整數)(3)積的乘方:(n是正整數)(4)同底數冪的除法:(a≠0,m、n都是正整數,且m>n)(5)零次冪:(a≠0)(6)負整數次冪:(a≠0,p是正整數).4、A【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】180000=1.8×105,故選A.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.5、B【解析】

根據左視圖的定義,從左側會發現兩個正方形摞在一起.【詳解】從左邊看上下各一個小正方形,如圖故選B.6、D【解析】分析:根據主視圖和俯視圖之間的關系可以得出答案.詳解:∵主視圖和俯視圖的長要相等,∴只有D選項中的長和俯視圖不相等,故選D.點睛:本題主要考查的就是三視圖的畫法,屬于基礎題型.三視圖的畫法為:主視圖和俯視圖的長要相等;主視圖和左視圖的高要相等;左視圖和俯視圖的寬要相等.7、B【解析】

利用合并同類項對A進行判斷;根據冪的乘方和同底數冪的除法對B進行判斷;根據同底數冪的乘法法則對C進行判斷;利用完全平方公式對D進行判斷.【詳解】解:A、a2與a3不能合并,所以A選項錯誤;B、原式=a6÷a6=1,所以A選項正確;C、原式=a5,所以C選項錯誤;D、原式=2+26+3=5+26,所以D選項錯誤.故選:B.【點睛】本題考查同底數冪的乘除、二次根式的混合運算,:二次根式的混合運算先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.解題關鍵是在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.8、B【解析】

分別根據無理數、有理數的定義逐一判斷即可得.【詳解】解:在0,π,-3,0.6,這5個實數中,無理數有π、這2個,故選B.【點睛】此題主要考查了無理數的定義,注意帶根號的要開不盡方才是無理數,無限不循環小數為無理數.如π,,0.8080080008…(每兩個8之間依次多1個0)等形式.9、C【解析】

化簡二次根式,并進行二次根式的乘法運算,最后合并同類二次根式即可.【詳解】原式=3﹣2·=3﹣=.故選C.【點睛】本題主要考查二次根式的化簡以及二次根式的混合運算.10、D【解析】

根據函數的圖象和所給出的圖形分別對每一項進行判斷即可.【詳解】由函數圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項正確.故選:D.【點睛】本題主要考查函數模型及其應用.11、B【解析】

根據數軸上不等式解集的表示方法得出此不等式組的解集,再對各選項進行逐一判斷即可.【詳解】解:由數軸上不等式解集的表示方法得出此不等式組的解集為:x≥-3,

A、不等式組的解集為x>-3,故A錯誤;B、不等式組的解集為x≥-3,故B正確;C、不等式組的解集為x<-3,故C錯誤;D、不等式組的解集為-3<x<5,故D錯誤.故選B.【點睛】本題考查的是在數軸上表示一元一次不等式組的解集,根據題意得出數軸上不等式組的解集是解答此題的關鍵.12、A【解析】

根據任何一個一次函數都可以化為一個二元一次方程,再根據兩個函數交點坐標就是二元一次方程組的解可直接得到答案.【詳解】解:∵直線y1=k1x+b1與y2=k2x+b2的交點坐標為(2,4),∴二元一次方程組的解為故選A.【點睛】本題主要考查了函數解析式與圖象的關系,滿足解析式的點就在函數的圖象上,在函數的圖象上的點,就一定滿足函數解析式.函數圖象交點坐標為兩函數解析式組成的方程組的解.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、40.0【解析】

首先過點A作AE∥BD,交CD于點E,易證得四邊形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函數的定義,而求得CE的長,繼而求得筒倉CD的高.【詳解】過點A作AE∥BD,交CD于點E,∵AB⊥BD,CD⊥BD,∴∠BAE=∠ABD=∠BDE=90°,∴四邊形ABDE是矩形,∴AE=BD=20m,DE=AB=0.8m,在Rt△ACE中,∠CAE=63°,∴CE=AE?tan63°=20×1.96≈39.2(m),∴CD=CE+DE=39.2+0.8=40.0(m).答:筒倉CD的高約40.0m,故答案為:40.0【點睛】此題考查解直角三角形的應用?仰角的定義,注意能借助仰角構造直角三角形并解直角三角形是解此題的關鍵,注意數形結合思想的應用.14、1【解析】

根據DE∥BC,得到,再代入AC=11-AE,則可求AE長.【詳解】∵DE∥BC,∴.∵,CE=11,∴,解得AE=1.故答案為1.【點睛】本題主要考查相似三角形的判定和性質,正確寫出比例式是解題的關鍵.15、y(x++2y)(x-2y)【解析】

首先提公因式,再利用平方差進行分解即可.【詳解】原式.故答案是:y(x+2y)(x-2y).【點睛】考查了提公因式法與公式法分解因式,要求靈活使用各種方法對多項式進行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運用公式法分解.16、【解析】

過梯形上底的兩個頂點向下底引垂線、,得到兩個直角三角形和一個矩形,分別解、求得線段、的長,然后與相加即可求得的長.【詳解】如圖,作,,垂足分別為點E,F,則四邊形是矩形.由題意得,米,米,,斜坡的坡度為1∶2,在中,∵,∴米.在Rt△DCF中,∵斜坡的坡度為1∶2,∴,∴米,∴(米).∴壩底的長度等于米.故答案為.【點睛】此題考查了解直角三角形的應用﹣坡度坡角問題,難度適中,解答本題的關鍵是構造直角三角形和矩形,注意理解坡度與坡角的定義.17、作圖見解析,【解析】解:如圖,點M即為所求.連接AC、BC.由題意知:AB=4,BC=1.∵AB為圓的直徑,∴∠ACB=90°,則AM=AC===,∴點M表示的數為.故答案為.點睛:本題主要考查作圖﹣尺規作圖,解題的關鍵是熟練掌握尺規作圖和圓周角定理及勾股定理.18、【解析】

連接,根據勾股定理知,可得當時,即線段最短,然后由勾股定理即可求得答案.【詳解】連接.∵是的切線,∴;∴,∴當時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【點睛】本題考查了切線的性質、等腰直角三角形的性質以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】

(1)利用待定系數法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;

(2)設P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數的性質解決問題;

(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標為(,);(2)存在.設P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當m=時,△CDP的面積存在最大值,最大值為;(3)當PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點睛】本題考核知識點:二次函數的綜合應用.解題關鍵點:靈活運用二次函數性質,運用數形結合思想.20、(1)該車間應安排4天加工童裝,6天加工成人裝;(2)36000元.【解析】

(1)利用某車間計劃用10天加工一批出口童裝和成人裝共360件,分別得出方程組成方程組求出即可;(2)利用(1)中所求,分別得出兩種服裝獲利即可得出答案.【詳解】解:(1)設該車間應安排x天加工童裝,y天加工成人裝,由題意得:,解得:,答:該車間應安排4天加工童裝,6天加工成人裝;(2)∵45×4=180,30×6=180,∴180×80+180×120=180×(80+120)=36000(元),答:該車間加工完這批服裝后,共可獲利36000元.【點睛】本題考查二元一次方程組的應用.21、(1);(1),E(1,1);(3)存在,P點坐標可以為(1+,5)或(3,5).【解析】

(1)設B(x1,5),由已知條件得,進而得到B(2,5).又由對稱軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設E(m,=﹣m+1.),F(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點坐標.(3)設N點為(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點坐標.又由△ABC∽△GNP,且時,得n=3或n=﹣2(舍去).求得P點坐標.【詳解】解:(1)設B(x1,5).由A(﹣1,5),對稱軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1)如圖1,∵B(2,5),C(5,1).∴直線BC的解析式為y=﹣x+1.由E在直線BC上,則設E(m,=﹣m+1.),F(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF?OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD?OC=×(2﹣)×1=∴S四邊形CDBF=S△CBF+S△CDB═﹣m1+2m+.化為頂點式得,S四邊形CDBF=﹣(m﹣1)1+.當m=1時,S四邊形CDBF最大,為.此時,E點坐標為(1,1).(3)存在.如圖1,由線段FG繞點G順時針旋轉一個角α(5°<α<95°),設N(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC為直角三角形.當△ABC∽△GNP,且時,即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此時P點坐標為(1+,5).當△ABC∽△GNP,且時,即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此時P點坐標為(3,5).綜上所述,滿足題意的P點坐標可以為,(1+,5),(3,5).【點睛】本題考查求拋物線,三角形的性質和面積的求法,直角三角形的判定,以及三角形相似的性質,屬于較難題.22、(1)見解析;(2).【解析】

對于(1),由已知條件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性質易得AD⊥BC,∠ADC=90°;接下來不難得到∠ADC=∠BED,至此問題不難證明;對于(2),利用勾股定理求出AD,利用相似比,即可求出DE.【詳解】解:(1)證明:∵,∴.又∵為邊上的中線,∴.∵,∴,∴.(2)∵,∴.在中,根據勾股定理,得.由(1)得,∴,即,∴.【點睛】此題考查相似三角形的判定與性質,解題關鍵在于掌握判定定理.23、(1)1;(2)【解析】

(1)設口袋中黃球的個數為x個,根據從中任意摸出一個球是紅球的概率為和概率公式列出方程,解方程即可求得答案;(2)根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案;【詳解】解:(1)設口袋中黃球的個數為個,根據題意得:解得:=1經檢驗:=1是原分式方程的解∴口袋中黃球的個數為1個(2)畫樹狀圖得:∵共有12種等可能的結果,兩次摸出都是紅球的有2種情況∴兩次摸出都是紅球的概率為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.24、這種測量方法可行,旗桿的高為21.1米.【解析】分析:根據已知得出過F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性質得出即可.詳解:這種測量方法可行.理由如下:設旗桿高AB=x.過F作FG⊥AB于G,交CE于H(如圖).所以△AGF∽△EHF.因為FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得,即,所以x﹣1.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論