




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.2.一個幾何體的三視圖如圖所示,正視圖、側視圖和俯視圖都是由一個邊長為的正方形及正方形內一段圓弧組成,則這個幾何體的表面積是()A. B. C. D.3.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關關系,統計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關關系為()A.正相關,相關系數的值為B.負相關,相關系數的值為C.負相關,相關系數的值為D.正相關,相關負數的值為4.在中所對的邊分別是,若,則()A.37 B.13 C. D.5.已知集合,則集合()A. B. C. D.6.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題7.設函數,則函數的圖像可能為()A. B. C. D.8.已知函數(,是常數,其中且)的大致圖象如圖所示,下列關于,的表述正確的是()A., B.,C., D.,9.已知復數為虛數單位),則z的虛部為()A.2 B. C.4 D.10.設m,n為直線,、為平面,則的一個充分條件可以是()A.,, B.,C., D.,11.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.12.已知正方體的棱長為,,,分別是棱,,的中點,給出下列四個命題:①;②直線與直線所成角為;③過,,三點的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內角的對邊分別為,已知,則的面積為___________.14.過直線上一動點向圓引兩條切線MA,MB,切點為A,B,若,則四邊形MACB的最小面積的概率為________.15.已知雙曲線的右準線與漸近線的交點在拋物線上,則實數的值為___________.16.已知向量,,若滿足,且方向相同,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數,為實數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線與曲線交于,兩點,線段的中點為.(1)求線段長的最小值;(2)求點的軌跡方程.18.(12分)在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的參數方程為(為參數),直線經過點且傾斜角為.(1)求曲線的極坐標方程和直線的參數方程;(2)已知直線與曲線交于,滿足為的中點,求.19.(12分)已知函數.(Ⅰ)求在點處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個實數根,且,證明:.20.(12分)已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于兩點,過點作直線交橢圓于點,且,直線交軸于點.(1)設橢圓的離心率為,當點為橢圓的右頂點時,的坐標為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.21.(12分)古人云:“腹有詩書氣自華.”為響應全民閱讀,建設書香中國,校園讀書活動的熱潮正在興起.某校為統計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調査,統計了他們一周課外讀書時間(單位:)的數據如下:一周課外讀書時間/合計頻數46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據表格中提供的數據,求,,的值并估算一周課外讀書時間的中位數.(2)如果讀書時間按,,分組,用分層抽樣的方法從名學生中抽取20人.①求每層應抽取的人數;②若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.22.(10分)在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數方程為(為參數),直線l與曲線C交于M、N兩點。(1)寫出直線l的普通方程和曲線C的直角坐標方程:(2)若成等比數列,求a的值。
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數原理可得出結果.【詳解】兩組至少都是人,則分組中兩組的人數分別為、或、,
又因為名女干部不能單獨成一組,則不同的派遣方案種數為.故選:C.【點睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.2.C【解析】
畫出直觀圖,由球的表面積公式求解即可【詳解】這個幾何體的直觀圖如圖所示,它是由一個正方體中挖掉個球而形成的,所以它的表面積為.故選:C【點睛】本題考查三視圖以及幾何體的表面積的計算,考查空間想象能力和運算求解能力.3.C【解析】
根據正負相關的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關.相關系數為負.故選:C.【點睛】本題考查變量的相關關系,考查正相關和負相關的區別.掌握正負相關的定義是解題基礎.4.D【解析】
直接根據余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎題.5.D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.6.B【解析】
由的單調性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數是R上的增函數,知命題p是真命題.對于命題q,當,即時,;當,即時,,由,得,無解,因此命題q是假命題.所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤.故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學生邏輯推理,分類討論,數學運算的能力,屬于中檔題.7.B【解析】
根據函數為偶函數排除,再計算排除得到答案.【詳解】定義域為:,函數為偶函數,排除,排除故選【點睛】本題考查了函數圖像,通過函數的單調性,奇偶性,特殊值排除選項是常用的技巧.8.D【解析】
根據指數函數的圖象和特征以及圖象的平移可得正確的選項.【詳解】從題設中提供的圖像可以看出,故得,故選:D.【點睛】本題考查圖象的平移以及指數函數的圖象和特征,本題屬于基礎題.9.A【解析】
對復數進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復數的四則運算及虛部的概念,計算過程要注意.10.B【解析】
根據線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【詳解】對于A選項,當,,時,由于不在平面內,故無法得出.對于B選項,由于,,所以.故B選項正確.對于C選項,當,時,可能含于平面,故無法得出.對于D選項,當,時,無法得出.綜上所述,的一個充分條件是“,”故選:B【點睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎題.11.D【解析】
利用余弦定理角化邊整理可得結果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應用,屬于基礎題.12.C【解析】
畫出幾何體的圖形,然后轉化判斷四個命題的真假即可.【詳解】如圖;連接相關點的線段,為的中點,連接,因為是中點,可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,.所以三棱錐的體積為,④正確;故選:.【點睛】本題考查命題的真假的判斷與應用,涉及空間幾何體的體積,直線與平面的位置關系的應用,平面的基本性質,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由余弦定理先算出c,再利用面積公式計算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:【點睛】本題考查利用余弦定理求解三角形的面積,考查學生的計算能力,是一道基礎題.14..【解析】
先求圓的半徑,四邊形的最小面積,轉化為的最小值為,求出切線長的最小值,再求的距離也就是圓心到直線的距離,可解得的取值范圍,利用幾何概型即可求得概率.【詳解】由圓的方程得,所以圓心為,半徑為,四邊形的面積,若四邊形的最小面積,所以的最小值為,而,即的最小值,此時最小為圓心到直線的距離,此時,因為,所以,所以的概率為.【點睛】本題考查直線與圓的位置關系,及與長度有關的幾何概型,考查了學生分析問題的能力,難度一般.15.【解析】
求出雙曲線的漸近線方程,右準線方程,得到交點坐標代入拋物線方程求解即可.【詳解】解:雙曲線的右準線,漸近線,雙曲線的右準線與漸近線的交點,交點在拋物線上,可得:,解得.故答案為.【點睛】本題考查雙曲線的簡單性質以及拋物線的簡單性質的應用,是基本知識的考查,屬于基礎題.16.【解析】
由向量平行坐標表示計算.注意驗證兩向量方向是否相同.【詳解】∵,∴,解得或,時,滿足題意,時,,方向相反,不合題意,舍去.∴.故答案為:1.【點睛】本題考查向量平行的坐標運算,解題時要注意驗證方向相同這個條件,否則會出錯.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)將曲線的方程化成直角坐標方程為,當時,線段取得最小值,利用幾何法求弦長即可.(2)當點與點不重合時,設,由利用向量的數量積等于可求解,最后驗證當點與點重合時也滿足.【詳解】解曲線的方程化成直角坐標方程為即圓心,半徑,曲線為過定點的直線,易知在圓內,當時,線段長最小為當點與點不重合時,設,化簡得當點與點重合時,也滿足上式,故點的軌跡方程為【點睛】本題考查了極坐標與普通方程的互化、直線與圓的位置關系、列方程求動點的軌跡方程,屬于基礎題.18.(1),;(2).【解析】
(1)由曲線的參數方程消去參數可得曲線的普通方程,由此可求曲線的極坐標方程;直接利用直線的傾斜角以及經過的點求出直線的參數方程即可;(2)將直線的參數方程,代入曲線的普通方程,整理得,利用韋達定理,根據為的中點,解出即可.【詳解】(1)由(為參數)消去參數,可得,即,已知曲線的普通方程為,,,,即,曲線的極坐標方程為,直線經過點,且傾斜角為,直線的參數方程:(為參數,).(2)設對應的參數分別為,.將直線的參數方程代入并整理,得,,.又為的中點,,,,,即,,,,即,.【點睛】本題考查了圓的參數方程與極坐標方程之間的互化以及直線參數方程的應用,考查了計算能力,屬于中檔題.19.(Ⅰ);(Ⅱ);(Ⅲ)證明見解析【解析】
(Ⅰ)根據導數的幾何意義求解即可.(Ⅱ)求導分析函數的單調性,并構造函數根據單調性分析可得只能在處取得最小值求解即可.(Ⅲ)根據(Ⅰ)(Ⅱ)的結論可知,在上恒成立,再分別設的解為、.再根據不等式的性質證明即可.【詳解】(Ⅰ)由題,故.且.故在點處的切線方程為.(Ⅱ)設恒成立,故.設函數則,故在上單調遞減且,又在上單調遞增.又,即且,故只能在處取得最小值,當時,此時,且在上,單調遞減.在上,單調遞增.故,滿足題意;當時,此時有解,且在上單調遞減,與矛盾;當時,此時有解,且在上單調遞減,與矛盾;故(Ⅲ).由(Ⅰ),在上單調遞減且,又在上單調遞增,故最多一根.又因為,,故設的解為,因為,故.所以在遞減,在遞增.因為方程有兩個實數根,故.結合(Ⅰ)(Ⅱ)有,在上恒成立.設的解為,則;設的解為,則.故,.故,得證.【點睛】本題主要考查了導數的幾何意義以及根據函數的單調性與最值求解參數值的問題.同時也考查了構造函數結合前問的結論證明不等式的方法.屬于難題.20.(1);(2)不存在,理由見解析【解析】
(1)寫出,根據,斜率乘積為-1,建立等量關系求解離心率;(2)寫出直線AB的方程,根據韋達定理求出點B的坐標,計算出弦長,根據垂直關系同理可得,利用等式即可得解.【詳解】(1)由題可得,過點作直線交橢圓于點,且,直線交軸于點.點為橢圓的右頂點時,的坐標為,即,,化簡得:,即,解得或(舍去),所以;(2)橢圓的方程為,由(1)可得,聯立得:,設B的橫坐標,根據韋達定理,即,,所以,同理可得若存在使得成立,則,化簡得:,,此方程無解,所以不存在使得成立.【點睛】此題考查求橢圓離心率,根據直線與橢圓的位置關系解決弦長問題,關鍵在于熟練掌握解析幾何常用方法,尤其是韋達定理在解決解析幾何問題中的應用.21.(1),,,中位數;(2)①三層中抽取的人數分別為2,5,13;②【解析】
(1)根據頻率分布直方表的性質,即可求得,得到,,再結合中位數的計算方法,即可求解.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,根據抽樣比,求得在三層中抽取的人數;②由①知,設內被抽取的學生分別為,內被抽取的學生分別為,利用列舉法得到基本事件的總數,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 郵輪公務員面試題及答案
- 應聘公務員試題及答案解析
- 銀行招聘面試題庫及答案
- 銀行情商面試題目及答案
- 銀行考公務員試題及答案
- 一級消防師考試題及答案
- 學校消防試題及答案
- 新消防員面試題庫及答案
- 兒童意外傷害預防與緊急救援安全教育協議
- 抖音直播火花主播打賞分成比例調整協議書
- GA/T 544-2021多道心理測試系統通用技術規范
- 年代小說先鋒小說
- 【超星爾雅學習通】世界建筑史網課章節答案
- (52)-皰疹性咽峽炎小兒推拿探秘
- 土建施工員培訓課件
- 新音樂初放 學堂樂歌說課課件
- GMP體系文件(手冊+程序)
- 陜西延長石油四海煤化工有限公司金屬鎂廠1萬噸-年金屬鎂生產項目環評報告
- 集電線路安裝工程質量通病防治
- 大學生動漫創業計劃書
- 2023年四川二造《建設工程計量與計價實務(土木建筑)》考試重點題庫200題(含解析)
評論
0/150
提交評論