




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.四張分別畫有平行四邊形、菱形、等邊三角形、圓的卡片,它們的背面都相同。現將它們背面朝上,從中任取一張,卡片上所畫圖形恰好是中心對稱圖形的概率是()A. B.1 C. D.2.如圖,在中,,將折疊,使點落在邊上的點處,為折痕,若,則的值為()A. B. C. D.3.在平面直角坐標系內,點P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,DE:EC=2:3,則S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:255.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.46.如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60nmile的A處,它沿正北方向航行一段時間后,到達位于燈塔P的北偏東30°方向上的B處,這時,B處與燈塔P的距離為()A.60nmile B.60nmile C.30nmile D.30nmile7.等腰三角形的兩邊長分別為5和11,則它的周長為()A.21 B.21或27 C.27 D.258.如圖所示是由相同的小正方體搭成的幾何體的俯視圖,小正方形中的數字表示該位置上小正方體的個數,那么該幾何體的主視圖是()A. B. C. D.9.如圖,二次函數的圖象開口向下,且經過第三象限的點若點P的橫坐標為,則一次函數的圖象大致是A. B. C. D.10.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數關系的圖象大致是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在反比例函數y=(x>0)的圖象上,有點P1,P2,P3,P4,…,它們的橫坐標依次為2,4,6,8,…分別過這些點作x軸與y軸的垂線,圖中所構成的陰影部分的面積從左到右依次記為S1,S2,S3,…,Sn,則S1+S2+S3+…+Sn=_____(用含n的代數式表示)12.已知,如圖,正方形ABCD的邊長是8,M在DC上,且DM=2,N是AC邊上的一動點,則DN+MN的最小值是_____.13.如圖,在△ABC中,BD和CE是△ABC的兩條角平分線.若∠A=52°,則∠1+∠2的度數為_______.14.如圖,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜邊AB上的中線,將△BCD沿直線CD翻折至△ECD的位置,連接AE.若DE∥AC,計算AE的長度等于_____.15.如圖,在矩形ABCD中,DE⊥AC,垂足為E,且tan∠ADE=,AC=5,則AB的長____.16.如果拋物線y=(k﹣2)x2+k的開口向上,那么k的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,函數的圖象與直線交于點A(3,m).求k、m的值;已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數的圖象于點N.①當n=1時,判斷線段PM與PN的數量關系,并說明理由;②若PN≥PM,結合函數的圖象,直接寫出n的取值范圍.18.(8分)如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經過B、M兩點的⊙O交BC于點G,交AB于點F,FB恰為⊙O的直徑.(1)判斷AE與⊙O的位置關系,并說明理由;(2)若BC=6,AC=4CE時,求⊙O的半徑.19.(8分)如圖,已知A(﹣4,),B(﹣1,m)是一次函數y=kx+b與反比例函數y=圖象的兩個交點,AC⊥x軸于點C,BD⊥y軸于點D.(1)求m的值及一次函數解析式;(2)P是線段AB上的一點,連接PC、PD,若△PCA和△PDB面積相等,求點P坐標.20.(8分)如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準BC邊上的點F將球打過去,經過反彈后,球剛好彈到D點位置.求BF的長.21.(8分)(2016湖南省株洲市)某市對初二綜合素質測評中的審美與藝術進行考核,規定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?(2)某同學測試成績為70分,他的綜合評價得分有可能達到A等嗎?為什么?(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?22.(10分)許昌芙蓉湖位于許昌市水系建設總體規劃中部,上游接納清泥河來水,下游為鹿鳴湖等水系供水,承擔著承上啟下的重要作用,是利用有限的水資源、形成良好的水生態環境打造生態宜居城市的重要部分.某校課外興趣小組想測量位于芙蓉湖兩端的A,B兩點之間的距離他沿著與直線AB平行的道路EF行走,走到點C處,測得∠ACF=45°,再向前走300米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為200米,求A,B兩點之間的距離(結果保留一位小數)23.(12分)如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉180°得到△EFC,連接AF、BE.(1)求證:四邊形ABEF是平行四邊形;(2)當∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.24.已知關于x的一元二次方程3x2﹣6x+1﹣k=0有實數根,k為負整數.求k的值;如果這個方程有兩個整數根,求出它的根.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】∵在:平行四邊形、菱形、等邊三角形和圓這4個圖形中屬于中心對稱圖形的有:平行四邊形、菱形和圓三種,∴從四張卡片中任取一張,恰好是中心對稱圖形的概率=.故選A.2、B【解析】
根據折疊的性質可知AE=DE=3,然后根據勾股定理求CD的長,然后利用正弦公式進行計算即可.【詳解】解:由折疊性質可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故選:B【點睛】本題考查折疊的性質,勾股定理解直角三角形及正弦的求法,掌握公式正確計算是本題的解題關鍵.3、D【解析】
判斷出P的橫縱坐標的符號,即可判斷出點P所在的相應象限.【詳解】當a為正數的時候,a+3一定為正數,所以點P可能在第一象限,一定不在第四象限,
當a為負數的時候,a+3可能為正數,也可能為負數,所以點P可能在第二象限,也可能在第三象限,
故選D.【點睛】本題考查了點的坐標的知識點,解題的關鍵是由a的取值判斷出相應的象限.4、D【解析】試題分析:先根據平行四邊形的性質及相似三角形的判定定理得出△DEF∽△BAF,從而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25試題解析:∵四邊形ABCD是平行四邊形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考點:1.相似三角形的判定與性質;2.三角形的面積;3.平行四邊形的性質.5、C【解析】
由角平分線的定義得到∠CBE=∠ABE,再根據線段的垂直平分線的性質得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據含30度的直角三角形三邊的關系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.6、B【解析】
如圖,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=nmile.故選B.7、C【解析】試題分析:分類討論:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系;當腰取11,則底邊為5,根據等腰三角形的性質得到另外一邊為11,然后計算周長.解:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系,所以這種情況不存在;當腰取11,則底邊為5,則三角形的周長=11+11+5=1.故選C.考點:等腰三角形的性質;三角形三邊關系.8、C【解析】A、B、D不是該幾何體的視圖,C是主視圖,故選C.【點睛】主視圖是由前面看到的圖形,俯視圖是由上面看到的圖形,左視圖是由左面看到的圖形,能看到的線畫實線,看不到的線畫虛線.9、D【解析】【分析】根據二次函數的圖象可以判斷a、b、的正負情況,從而可以得到一次函數經過哪幾個象限,觀察各選項即可得答案.【詳解】由二次函數的圖象可知,,,當時,,的圖象經過二、三、四象限,觀察可得D選項的圖象符合,故選D.【點睛】本題考查二次函數的圖象與性質、一次函數的圖象與性質,認真識圖,會用函數的思想、數形結合思想解答問題是關鍵.10、A【解析】
此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數關系由函數關系式可看出A中的函數圖象與所求的分段函數對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數關系式,但需注意自變量的取值范圍.二、填空題(本大題共6個小題,每小題3分,共18分)11、10﹣【解析】
過點P1、點Pn+1作y軸的垂線段,垂足分別是點A、B,過點P1作x軸的垂線段,垂足是點C,P1C交BPn+1于點D,所有的陰影部分平移到左邊,陰影部分的面積之和就等于矩形P1ABD的面積,即可得到答案.【詳解】如圖,過點P1、點Pn+1作y軸的垂線段,垂足分別是點A、B,過點P1作x軸的垂線段,垂足是點C,P1C交BPn于點D,則點Pn+1的坐標為(2n+2,),則OB=,∵點P1的橫坐標為2,∴點P1的縱坐標為5,∴AB=5﹣,∴S1+S2+S3+…+Sn=S矩形AP1DB=2(5﹣)=10﹣,故答案為10﹣.【點睛】本題考查了反比例函數系數k的幾何意義,反比例函數圖象上點的坐標特征,解題的關鍵是掌握過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|.12、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉化DN,MN的值,從而找出其最小值求解.解答:解:如圖,連接BM,∵點B和點D關于直線AC對稱,∴NB=ND,則BM就是DN+MN的最小值,∵正方形ABCD的邊長是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故答案為1.點評:考查正方形的性質和軸對稱及勾股定理等知識的綜合應用.13、64°【解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的兩條角平分線,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案為64°.點睛:本題考查的是三角形內角和定理、角平分線的定義,掌握三角形內角和等于180°是解題的關鍵.14、2【解析】
根據題意、解直角三角形、菱形的性質、翻折變化可以求得AE的長.【詳解】由題意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等邊三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四邊形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案為2.【點睛】本題考查翻折變化、平行線的性質、直角三角形斜邊上的中線,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.15、3.【解析】
先根據同角的余角相等證明∠ADE=∠ACD,在△ADC根據銳角三角函數表示用含有k的代數式表示出AD=4k和DC=3k,從而根據勾股定理得出AC=5k,又AC=5,從而求出DC的值即為AB.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,設AD=4k,CD=3k,則AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案為3.【點睛】本題考查矩形的性質和利用銳角三角函數解直角三角形,解決此類問題時需要將已知角的三角函數、已知邊、未知邊,轉換到同一直角三角形中,然后解決問題.16、k>2【解析】
根據二次函數的性質可知,當拋物線開口向上時,二次項系數k﹣2>1.【詳解】因為拋物線y=(k﹣2)x2+k的開口向上,所以k﹣2>1,即k>2,故答案為k>2.【點睛】本題考查二次函數,解題的關鍵是熟練運用二次函數的圖象與性質,本題屬于中等題型.三、解答題(共8題,共72分)17、(1)k的值為3,m的值為1;(2)0<n≤1或n≥3.【解析】分析:(1)將A點代入y=x-2中即可求出m的值,然后將A的坐標代入反比例函數中即可求出k的值.(2)①當n=1時,分別求出M、N兩點的坐標即可求出PM與PN的關系;②由題意可知:P的坐標為(n,n),由于PN≥PM,從而可知PN≥2,根據圖象可求出n的范圍.詳解:(1)將A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),將A(3,1)代入y=,∴k=3×1=3,m的值為1.(2)①當n=1時,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),點P在直線y=x上,過點P作平行于x軸的直線,交直線y=x-2于點M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3點睛:本題考查反比例函數與一次函數的綜合問題,解題的關鍵是求出反比例函數與一次函數的解析式,本題屬于基礎題型.18、(1)AE與⊙O相切.理由見解析.(2)2.1【解析】
(1)連接OM,則OM=OB,利用平行的判定和性質得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性質和切線的判定即可得證;(2)設⊙O的半徑為r,則AO=12﹣r,利用等腰三角形的性質和解直角三角形的有關知識得到AB=12,易證△AOM∽△ABE,根據相似三角形的性質即可求解.【詳解】解:(1)AE與⊙O相切.理由如下:連接OM,則OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABC,∴∠OBM=∠EBM,∴∠OMB=∠EBM,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=6,cosC=,∴BE=3,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB===12,設⊙O的半徑為r,則AO=12﹣r,∵OM∥BC,∴△AOM∽△ABE,∴,∴=,解得:r=2.1,∴⊙O的半徑為2.1.19、(1)m=2;y=x+;(2)P點坐標是(﹣,).【解析】
(1)利用待定系數法求一次函數和反比例函數的解析式;
(2)設點P的坐標為根據面積公式和已知條件列式可求得的值,并根據條件取舍,得出點P的坐標.【詳解】解:(1)∵反比例函數的圖象過點∴∵點B(﹣1,m)也在該反比例函數的圖象上,∴﹣1?m=﹣2,∴m=2;設一次函數的解析式為y=kx+b,由y=kx+b的圖象過點A,B(﹣1,2),則解得:∴一次函數的解析式為(2)連接PC、PD,如圖,設∵△PCA和△PDB面積相等,∴解得:∴P點坐標是【點睛】本題考查待定系數法求反比例函數以及一次函數解析式,反比例函數與一次函數的交點問題,熟練掌握待定系數法是解題的關鍵.20、BF的長度是1cm.【解析】
利用“兩角法”證得△BEF∽△CDF,利用相似三角形的對應邊成比例來求線段CF的長度.【詳解】解:如圖,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;∴=,又∵AD=BC=260cm,AB=CD=130cm,AE=60cm∴BE=70cm,CD=130cm,BC=260cm,CF=(260-BF)cm∴=,解得:BF=1.即:BF的長度是1cm.【點睛】本題主要考查相似三角形的判定和性質,關鍵要掌握:有兩角對應相等的兩三角形相似;兩三角形相似,對應邊的比相等.21、(1)孔明同學測試成績位90分,平時成績為95分;(2)不可能;(3)他的測試成績應該至少為1分.【解析】試題分析:(1)分別利用孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,分別得出等式求出答案;(2)利用測試成績占80%,平時成績占20%,進而得出答案;(3)首先假設平時成績為滿分,進而得出不等式,求出測試成績的最小值.試題解析:(1)設孔明同學測試成績為x分,平時成績為y分,依題意得:,解之得:.答:孔明同學測試成績位90分,平時成績為95分;(2)由題意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)設平時成績為滿分,即100分,綜合成績為100×20%=20,設測試成績為a分,根據題意可得:20+80%a≥80,解得:a≥1.答:他的測試成績應該至少為1分.考點:一元一次不等式的應用;二元一次方程組的應用.22、215.6米.【解析】
過A點做EF的垂線,交EF于M點,過B點做EF的垂線,交EF于N點,根據Rt△ACM和三角函數求出CM、DN,然后根據即可求出A、B兩點間的距離.【詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信息咨詢行業發展研究與策略分析
- 軍事設施及作戰基地建設規范文檔
- 北京舞蹈學院《女裝紙樣設計》2023-2024學年第一學期期末試卷
- 山東商務職業學院《跨文化交流與管理》2023-2024學年第一學期期末試卷
- 音樂腦科學探索-洞察及研究
- 云南理工職業學院《拉丁美洲文學史》2023-2024學年第一學期期末試卷
- 安吉cs團建活動方案
- 宣傳板凳活動策劃方案
- 小學牛奶促銷活動方案
- 尋寶樂園活動方案
- 2025年新疆維吾爾阿克蘇地區沙雅縣小升初數學檢測卷含解析
- 《道路交通重大事故隱患排查指引(試行)》知識培訓
- 關于八段錦的英語對話
- 眼部換藥標準流程
- 長R-P的SVT鑒別診斷常用的電刺激方法
- 核心制度:安全輸血制度
- 《中華人民共和國職業分類大典》(2022年版)各行業職業表格統計版(含數字職業)
- 露天煤礦施工方案
- 《銀行業金融機構安全評估標準》
- 非新生兒破傷風診療規范(2024年版)解讀
- 企業內部培訓體系搭建及實施效果評估報告
評論
0/150
提交評論