




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,兩根竹竿和都斜靠在墻上,測得,則兩竹竿的長度之比等于()A. B. C. D.2.下列說法正確的是()A.“任意畫出一個等邊三角形,它是軸對稱圖形”是隨機事件B.某種彩票的中獎率為,說明每買1000張彩票,一定有一張中獎C.拋擲一枚質地均勻的硬幣一次,出現正面朝上的概率為D.“概率為1的事件”是必然事件3.關于拋物線y=-3(x+1)2﹣2,下列說法正確的是()A.開口方向向上 B.頂點坐標是(1,2)C.當x<-1時,y隨x的增大而增大 D.對稱軸是直線x=14.如圖,在平面直角坐標系中,菱形的頂點與原點重合,頂點落在軸的正半軸上,對角線、交于點,點、恰好都在反比例函數的圖象上,則的值為()A. B. C.2 D.5.如圖,在直角坐標系中,⊙A的半徑為2,圓心坐標為(4,0),y軸上有點B(0,3),點C是⊙A上的動點,點P是BC的中點,則OP的范圍是()A. B.2≤OP≤4 C.≤OP≤ D.3≤OP≤46.已知關于x的一元二次方程(k﹣1)x2﹣2x+1=0有兩個不相等的實數根,則k的取值范圍是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠17.若一元二次方程kx2﹣3x﹣=0有實數根,則實數k的取值范圍是()A.k=﹣1 B.k≥﹣1且k≠0 C.k>﹣1且k≠0 D.k≤﹣1且k≠08.如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是()A.△AFD≌△DCE B.AF=ADC.AB=AF D.BE=AD﹣DF9.在Rt△ABC中,∠C=90°,若斜邊AB是直角邊BC的3倍,則tanB的值是()A. B.3 C. D.210.下列美麗的圖案中,既是軸對稱圖形又是中心對稱圖形的個數有()A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.已知二次函數中,函數與自變量的部分對應值如下表:…-2-1012……105212…則當時,的取值范圍是______.12.如圖,在平面直角坐標系中,已知點,為平面內的動點,且滿足,為直線上的動點,則線段長的最小值為________.13.已知反比例函數的圖象經過點P(a+1,4),則a=_________________.14.如圖,公路AC,BC互相垂直,公路AB的中點M與點C被湖隔開,若測得AB的長為2.4km,則M,C兩點間的距離為______km.15.方程的根是________.16.超市經銷一種水果,每千克盈利10元,每天銷售500千克,經市場調查,若每千克漲價1元,日銷售量減少20千克,現超市要保證每天盈利6000元,每千克應漲價為______元.17.如圖,⊙O的直徑AB=20cm,CD是⊙O的弦,AB⊥CD,垂足為E,OE:EB=3:2,則CD的長是________cm.18.一個扇形的弧長是,面積是,則這個扇形的圓心角是___度.三、解答題(共66分)19.(10分)如圖,為的直徑,、為上兩點,,,垂足為.直線交的延長線于點,連接.(1)判斷與的位置關系,并說明理由;(2)求證:.20.(6分)已知在△ABC中,AB=AC,∠BAC=α,直線l經過點A(不經過點B或點C),點C關于直線l的對稱點為點D,連接BD,CD.(1)如圖1,①求證:點B,C,D在以點A為圓心,AB為半徑的圓上;②直接寫出∠BDC的度數(用含α的式子表示)為;(2)如圖2,當α=60°時,過點D作BD的垂線與直線l交于點E,求證:AE=BD;(3)如圖3,當α=90°時,記直線l與CD的交點為F,連接BF.將直線l繞點A旋轉的過程中,在什么情況下線段BF的長取得最大值?若AC=2a,試寫出此時BF的值.21.(6分)如圖,四邊形ABCD的三個頂點A、B、D在⊙O上,BC經過圓心O,且交⊙O于點E,∠A=120°,∠C=30°.(1)求證:CD是⊙O的切線.(2)若CD=6,求BC的長.(3)若⊙O的半徑為4,則四邊形ABCD的最大面積為.22.(8分)如圖,已知∠ABC=90°,點P為射線BC上任意一點(點P與點B不重合),分別以AB、AP為邊在∠ABC的內部作等邊△ABE和△APQ,連接QE并延長交BP于點F.試說明:(1)△ABP≌△AEQ;(2)EF=BF23.(8分)某食品代理商向超市供貨,原定供貨價為元/件,超市售價為元/件.為打開市場超市決定在第一季度對產品打八折促銷,第二季度再回升個百分點,為保證超市利潤,代理商承諾在供貨價基礎上向超市返點試問平均每季度返多少個百分點,半年后超市的銷售利潤回到開始供貨時的水平?24.(8分)今年“五?一”節期間,紅星商場舉行抽獎促銷活動,凡在本商場購物總金額在300元以上者,均可抽一次獎,獎品為精美小禮品.抽獎辦法是:在一個不透明的袋子中裝有四個標號分別為1,2,3,4的小球,它們的形狀、大小、質地等完全相同.抽獎者第一次摸出一個小球,不放回,第二次再摸出一個小球,若兩次摸出的小球中有一個小球標號為“1”,則獲獎.(1)請你用樹形圖或列表法表示出抽獎所有可能出現的結果;(2)求抽獎人員獲獎的概率.25.(10分)如圖,拋物線y=ax2+bx﹣4經過A(﹣3,0),B(5,﹣4)兩點,與y軸交于點C,連接AB,AC,BC.(1)求拋物線的表達式;(2)求△ABC的面積;(3)拋物線的對稱軸上是否存在點M,使得△ABM是直角三角形?若存在,求出點M的坐標;若不存在,請說明理由.26.(10分)小亮晚上在廣場散步,圖中線段AB表示站立在廣場上的小亮,線段PO表示直立在廣場上的燈桿,點P表示照明燈的位置.(1)請你在圖中畫出小亮站在AB處的影子BE;(2)小亮的身高為1.6m,當小亮離開燈桿的距離OB為2.4m時,影長為1.2m,若小亮離開燈桿的距離OD=6m時,則小亮(CD)的影長為多少米?
參考答案一、選擇題(每小題3分,共30分)1、D【分析】在兩個直角三角形中,分別求出AB、AD即可解決問題.【詳解】根據題意:在Rt△ABC中,,則,在Rt△ACD中,,則,∴.故選:D.【點睛】本題考查了解直角三角形的應用、銳角三角函數等知識,解題的關鍵是學會利用參數解決問題.2、D【解析】試題解析:A、“任意畫出一個等邊三角形,它是軸對稱圖形”是必然事件,選項錯誤;B.某種彩票的中獎概率為,說明每買1000張,有可能中獎,也有可能不中獎,故B錯誤;C.拋擲一枚質地均勻的硬幣一次,出現正面朝上的概率為.故C錯誤;D.“概率為1的事件”是必然事件,正確.故選D.3、C【分析】根據拋物線的解析式得出拋物線的性質,從而判斷各選項.【詳解】解:∵拋物線y=-3(x+1)2﹣2,
∴頂點坐標是(-1,-2),對稱軸是直線x=-1,根據a=-3<0,得出開口向下,當x<-1時,y隨x的增大而增大,
∴A、B、D說法錯誤;
C說法正確.
故選:C.【點睛】本題主要考查對二次函數的性質的理解和掌握,能熟練地運用二次函數的性質進行判斷是解此題的關鍵.4、A【解析】利用菱形的性質,根據正切定義即可得到答案.【詳解】解:設,,∵點為菱形對角線的交點,∴,,,∴,把代入得,∴,∵四邊形為菱形,∴,∴,解得,∴,在中,,∴.故選A.【點睛】本題考查了反比例函數圖象上點的坐標特征,解題關鍵在于運用菱形的性質.5、A【分析】如圖,在y軸上取點B'(0,﹣3),連接B'C,B'A,由勾股定理可求B'A=5,由三角形中位線定理可求B'C=2OP,當點C在線段B'A上時,B'C的長度最小值=5﹣2=3,當點C在線段B'A的延長線上時,B'C的長度最大值=5+2=7,即可求解.【詳解】解:如圖,在y軸上取點B'(0,﹣3),連接B'C,B'A,∵點B(0,3),B'(0,﹣3),點A(4,0),∴OB=OB'=3,OA=4,∴,∵點P是BC的中點,∴BP=PC,∵OB=OB',BP=PC,∴B'C=2OP,當點C在線段B'A上時,B'C的長度最小值=5﹣2=3,當點C在線段B'A的延長線上時,B'C的長度最大值=5+2=7,∴,故選:A.【點睛】本題考查了三角形中位線定理,勾股定理,平面直角坐標系,解決本題的關鍵是正確理解題意,熟練掌握三角形中位線定理的相關內容,能夠得到線段之間的數量關系.6、D【分析】根據方程有兩個不相等的實數根,得到一元二次方程的二次項系數不為零、根的判別式的值大于零,從而列出關于的不等式組,求出不等式組的解集即可得到的取值范圍.【詳解】根據題意得:,且,解得:,且.故選:D.【點睛】本題考查了一元二次方程的定義以及根的判別式,能夠準確得到關于的不等式組是解決問題的關鍵.7、B【分析】根據一元二次方程根的判別式△=9+9k≥0即可求出答案.【詳解】解:由題意可知:△=9+9k≥0,∴k≥﹣1,∵k≠0,∴k≥﹣1且k≠0,故選:B.【點睛】本題考查了根據一元二次方程根的情況求方程中的參數,解題的關鍵是熟知一元二次方程根的判別式的應用.8、B【解析】A.由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故A正確;B.∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故B錯誤;C.由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故C正確;D.由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故D正確;故選B.9、D【分析】先求出AC,再根據正切的定義求解即可.【詳解】設BC=x,則AB=3x,由勾股定理得,AC=,tanB===,故選D.考點:1.銳角三角函數的定義;2.勾股定理.10、B【分析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:從左數第一、四個是軸對稱圖形,也是中心對稱圖形.第二是軸對稱圖形,不是中心對稱圖形,第三個圖形是中心對稱圖形不是軸對稱圖形.故選B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(每小題3分,共24分)11、【分析】觀察表格可得:(0,2)與(2,2)在拋物線上,由此可得拋物線的對稱軸是直線x=1,頂點坐標是(1,1),且拋物線開口向上,于是可得點(-1,5)與(3,5)關于直線x=1對稱,進而可得答案.【詳解】解:根據表格中的數據可知:(0,2)與(2,2)關于直線x=1對稱,所以拋物線的對稱軸是直線x=1,頂點坐標是(1,1),且拋物線開口向上,∴點(-1,5)與(3,5)關于直線x=1對稱,∴當時,的取值范圍是:.故答案為:.【點睛】本題考查了拋物線的性質,通過觀察得出拋物線的對稱軸是直線x=1,靈活利用拋物線的對稱性是解題的關鍵.12、【分析】由直徑所對的圓周角為直角可知,動點軌跡為以中點為圓心,長為直徑的圓,求得圓心到直線的距離,即可求得答案.【詳解】∵,∴動點軌跡為:以中點為圓心,長為直徑的圓,∵,,∴點M的坐標為:,半徑為1,過點M作直線垂線,垂足為D,交⊙D于C點,如圖:此時取得最小值,∵直線的解析式為:,∴,∴,∵,∴,∴最小值為,故答案為:.【點睛】本題考查了點的軌跡,圓周角定理,圓心到直線的距離,正確理解點到直線的距離垂線段最短是正確解答本題的關鍵.13、-3【分析】直接將點P(a+1,4)代入求出a即可.【詳解】直接將點P(a+1,4)代入,則,解得a=-3.【點睛】本題主要考查反比例函數圖象上點的坐標特征,熟練掌握反比例函數知識和計算準確性是解決本題的關鍵,難度較小.14、1.1【解析】根據直角三角形斜邊上的中線等于斜邊的一半,可得MC=12AB=1.1km【詳解】∵在Rt△ABC中,∠ACB=90°,M為AB的中點,∴MC=12故答案為:1.1.【點睛】此題考查直角三角形的性質,解題關鍵點是熟練掌握在直角三角形中,斜邊上的中線等于斜邊的一半,理解題意,將實際問題轉化為數學問題是解題的關鍵.15、x1=0,x1=1【分析】先移項,再用因式分解法求解即可.【詳解】解:∵,∴,∴x(x-1)=0,x1=0,x1=1.故答案為:x1=0,x1=1.【點睛】本題考查了一元二次方程的解法,常用的方法有直接開平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關鍵.16、5或1【分析】設每千克水果應漲價x元,得出日銷售量將減少20x千克,再由盈利額=每千克盈利×日銷售量,依題意得方程求解即可.【詳解】解:設每千克水果應漲價x元,依題意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解這個方程,得x1=5,x2=1.答:每千克水果應漲價5元或1元.故答案為:5或1.【點睛】本題考查了一元二次方程的應用,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列方程.17、1【分析】根據垂徑定理與勾股定理即可求出答案.【詳解】解:連接OC,設OE=3x,EB=2x,
∴OB=OC=5x,
∵AB=20cm
∴10x=20
∴x=2cm,∴OC=10cm,OE=6cm,
∴由勾股定理可知:CE=cm,
∴CD=2CE=1cm,
故答案為:1.【點睛】本題考查垂徑定理的應用,解題的關鍵是根據勾股定理求出CE的長度,本題屬于基礎題型.18、150【分析】根據弧長公式計算.【詳解】根據扇形的面積公式可得:,解得r=24cm,再根據弧長公式,解得.故答案為:150.【點睛】本題考查了弧長的計算及扇形面積的計算,要記熟公式:扇形的面積公式,弧長公式.三、解答題(共66分)19、(1)EF與⊙O相切,理由見解析;(2)證明見解析.【分析】(1)連接OC,由題意可得∠OCA=∠FAC=∠OAC,可得OC∥AF,可得OC⊥EF,即EF是⊙O的切線;(2)連接BC,根據直徑所對圓周角是直角證得△ACF∽△ABC,即可證得結論.【詳解】(1)EF與⊙O相切,理由如下:如圖,連接OC,∵,∴∠FAC=∠BAC,∵OC=OA,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AF,又∵EF⊥AF,∴OC⊥EF,∴EF是⊙O的切線;(2)連接BC,∵AB為直徑,∴∠BCA=90°,又∵∠FAC=∠BAC,∴△ACF∽△ABC,∴,∴.【點睛】本題考查了直線與圓的位置關系,切線的判定和性質,圓周角定理,相似三角形的判定和性質,熟練運用切線的判定和性質是本題的關鍵.20、(1)①詳見解析;②α;(2)詳見解析;(3)當B、O、F三點共線時BF最長,(+)a【分析】(1)①由線段垂直平分線的性質可得AD=AC=AB,即可證點B,C,D在以點A為圓心,AB為半徑的圓上;②由等腰三角形的性質可得∠BAC=2∠BDC,可求∠BDC的度數;(2)連接CE,由題意可證△ABC,△DCE是等邊三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根據“SAS”可證△BCD≌△ACE,可得AE=BD;(3)取AC的中點O,連接OB,OF,BF,由三角形的三邊關系可得,當點O,點B,點F三點共線時,BF最長,根據等腰直角三角形的性質和勾股定理可求,,即可求得BF【詳解】(1)①連接AD,如圖1.∵點C與點D關于直線l對稱,∴AC=AD.∵AB=AC,∴AB=AC=AD.∴點B,C,D在以A為圓心,AB為半徑的圓上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=α故答案為:α.(2連接CE,如圖2.∵∠BAC=60°,AB=AC,∴△ABC是等邊三角形,∴BC=AC,∠ACB=60°,∵∠BDC=α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵點C關于直線l的對稱點為點D,∴DE=CE,且∠CDE=60°∴△CDE是等邊三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如圖3,取AC的中點O,連接OB,OF,BF,,F是以AC為直徑的圓上一點,設AC中點為O,∵在△BOF中,BO+OF≥BF,當B、O、F三點共線時BF最長;如圖,過點O作OH⊥BC,∵∠BAC=90°,AB=AC=2a,∴,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴,∵點O是AC中點,AC=2a,∴,∴,∴BH=3a,∴,∵點C關于直線l的對稱點為點D,∴∠AFC=90°,∵點O是AC中點,∴,∴,∴當B、O、F三點共線時BF最長;最大值為(+)a.【點睛】本題是三角形綜合題,考查了全等三角形的判定和性質,等腰三角形的性質,勾股定理,三角形的三邊關系,靈活運用相關的性質定理、綜合運用知識是解題的關鍵.21、(1)證明見解析;(2);(3).【分析】(1)連接、,根據圓內接四邊形的性質得到,求得,又點在上,于是得到結論;(2)由(1)知:又,設為,則為,根據勾股定理即可得到結論;(3)連接BD,OA,根據已知條件推出當四邊形ABOD的面積最大時,四邊形ABCD的面積最大,當OA⊥BD時,四邊形ABOD的面積最大,根據三角形和菱形的面積公式即可得到結論.【詳解】解:(1)證明:連接、,四邊形為圓內接四邊形,,,,又點在上,是的切線;(2)由(1)知:又,,設為,則為,在中,,即,,又,,;(3)連接,,,,,,,,,,,當四邊形的面積最大時,四邊形的面積最大,當時,四邊形的面積最大,四邊形的最大面積,故答案為:.【點睛】本題考查了圓的綜合題,切線的判定,勾股定理,三角形的面積的計算,正確的作出輔助線是解題的關鍵.22、1.【解析】(1)根據等邊三角形性質得出AB=AE,AP=AQ,∠ABE=∠BAE=∠PAQ=60°,求出∠BAP=∠EAQ,根據SAS證△BAP≌△EAQ,推出∠AEQ=∠ABC=90°;
(1)根據等邊三角形性質求出∠ABE=∠AEB=60°,根據∠ABC=90°=∠AEQ求出∠BEF=∠EBF=30°,即可得出答案.(1)解:△BEC是等腰三角形,理由是:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ECB,∵CE平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,∴△BEC是等腰三角形.(1)解:∵四邊形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠AEB=45°=∠ABE,∴AE=AB=,由勾股定理得:BE=,即BC=BE=1.“點睛”本題考查了等邊三角形的性質,全等三角形的性質和判定,等腰三角形的性質和判定的應用.23、代理商平均每個季度向超市返個百分點,半年后超市的利潤回到開始供貨時的水平.【分析】設代理商平均每個季度向超市返個百分點,根據題意列出方程,解方程,即可得到答案.【詳解】解:設代理商平均每個季度向超市返個百分點,由題意得:,解得:(舍去).∴代理商平均每個季度向超市返個百分點,半年后超市的利潤回到開始供貨時的水平.【點睛】本題考查了一元二次方程的應用,解題的關鍵是找到題目的等量關系,列出方程.24、(1)詳見解析(2)12【解析】試題分析:(1)根據列表法與畫樹狀圖的方法畫出即可。(2)根據概率公式列式計算即可得解。解:(1)畫樹狀圖表示如下:抽獎所有可能出現的結果有12種。(2)∵由(1)知,抽獎所有可能出現的結果共有12種,這些結果出現的可能性相等,其中有一個小球標號為“1”的有6種,∴抽獎人員的獲獎概率為P=625、(1)y=x2﹣x﹣4;(2)10;(3)存在,M1(,11),M2(,﹣),M3(,﹣2),M4(,﹣﹣2).【分析】(1)將點A,B代入y=ax2+bx﹣4即可求出拋物線解析式;(2)在拋物線y=x2﹣x﹣4中,求出點C的坐標,推出BC∥x軸,即可由三角形的面積公式求出△ABC的面積;(3)求出拋物線y=x2﹣x﹣4的對稱軸,然后設點M(,m),分別使∠AMB=90°,∠ABM=90°,∠AMB=90°三種情況進行討論,由相似三角形和勾股定理即可求出點M的坐標.【詳解】解:(1)將點A(﹣3,0),B(5,﹣4)代入y=ax2+bx﹣4,得,解得,,∴拋物線的解析式為:y=x2﹣x﹣4;(2)在拋物線y=x2﹣x﹣4中,當x=0時,y=﹣4,∴C(0,﹣4),∵B(5,﹣4),∴BC∥x軸,∴S△ABC=BC?OC=×5×4=10,∴△ABC的面積為10;(3)存在,理由如下:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件測試工程師發展歷程分析試題及答案
- 網絡安全漏洞類型與應對措施試題及答案
- 行政組織理論與組織行為學試題及答案
- 公司資金費用管理制度
- 公司員工購車管理制度
- 基金服務質量管理制度
- 公司外出會議管理制度
- 廣通蠶種公司管理制度
- 勞務派遣信用管理制度
- 基層班子資金管理制度
- 2025年日歷(日程安排-可直接打印)
- 軟件項目成果報告范文
- 【MOOC】心理學-華南師范大學 中國大學慕課MOOC答案
- 針灸治療之蛇串瘡課件
- 大型商場裝修施工組織設計方案
- 【MOOC】材料力學-西北工業大學 中國大學慕課MOOC答案
- 《英語翻譯》教案全套 陳霞 第1-8章 中西方翻譯史 - 文體翻譯
- 人教版(2024)八年級上冊物理期中模擬試卷3套(含答案)
- DB11∕T 2115-2023 機械式停車設備使用管理和維護保養安全技術規范
- 2025年中考化學易錯類型:物質檢驗 鑒別 除雜 分離“五大”易錯防范(解析版)
- 福建省泉州市語文小升初試卷及答案指導(2024-2025學年)
評論
0/150
提交評論