




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.已知關于x的一元二次方程x2+(2k+1)x+k2=0①有兩個不相等的實數根.則k的取值范圍為()A.k>﹣ B.k>4 C.k<﹣1 D.k<42.如圖,已知⊙O中,半徑OC垂直于弦AB,垂足為D,若OD=3,OA=5,則AB的長為()A.2 B.4 C.6 D.83.一元二次方程的根是()A.1 B.3 C.1或3 D.-1或34.如圖,在平面直角坐標系中,點M的坐標為M(,2),那么cosα的值是()A. B. C. D.5.如圖,我國傳統文化中的“福祿壽喜”圖由四個圖案構成,這四個圖案中是中心對稱圖形的是()A. B. C. D.6.如圖,中,點、分別在、上,,,則與四邊形的面積的比為()A. B. C. D.7.一副透明的三角板,如圖疊放,直角三角板的斜邊AB、CE相交于點D,則∠BDC的度數為()A.60° B.45° C.75° D.90°8.下列命題是真命題的是()A.如果|a|=|b|,那么a=bB.平行四邊形對角線相等C.兩直線平行,同旁內角互補D.如果a>b,那么a2>b29.若關于x的一元二次方程kx2﹣2x+1=0有兩個不相等的實數根,則實數k的取值范圍是()A.k>1 B.k<1 C.k>1且k≠0 D.k<1且k≠010.投擲兩枚質地均勻的骰子,骰子的六個面上分別刻有1到6的點數,觀察兩枚骰子向上一面的點數情況.則下列事件為隨機事件的是()A.點數之和等于1 B.點數之和等于9C.點數之和大于1 D.點數之和大于1211.如果,那么=()A. B. C. D.12.如圖,小江同學把三角尺含有角的一端以不同的方向穿入進另一把三角尺(含有角)的孔洞中,已知孔洞的最長邊為,則三角尺穿過孔洞部分的最大面積為()A. B. C. D.二、填空題(每題4分,共24分)13.將拋物線y=2x2的圖象向上平移1個單位長度后,所得拋物線的解析式為_____.14.由一些大小相同的小正方體搭成的幾何體的主視圖和俯視圖,如圖所示,則搭成該幾何體的小正方體最多是_____個.15.設,,,設,則S=________________(用含有n的代數式表示,其中n為正整數).16.如圖,在平行四邊形ABCD中,點E在AD邊上,且AE:ED=1:2,若EF=4,則CE的長為___17.一個幾何體的三視圖如圖所示,根據圖中數據,計算出該幾何體的表面積是__________.18.已知⊙半徑為,點在⊙上,,則線段的最大值為_____.三、解答題(共78分)19.(8分)如圖,已知拋物線y=ax2+bx+5經過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結CD.(1)求該拋物線的表達式;(2)點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.①當點P在直線BC的下方運動時,求△PBC的面積的最大值;②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.20.(8分)如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC,將△ABC沿AB翻折后得到△ABD
(1)試說明點D在⊙O上;(2)在線段AD的延長線上取一點E,使AB2=AC·AE,求證:BE為⊙O的切線;(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.21.(8分)計算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.22.(10分)如圖,在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A(1,1),B(4,0),C(4,4).(1)按下列要求作圖:①將△ABC向左平移4個單位,得到△A1B1C1;②將△A1B1C1繞點B1逆時針旋轉90°,得到△A1B1C1.(1)求點C1在旋轉過程中所經過的路徑長.23.(10分)在中,是邊上的中線,點在射線上,過點作交的延長線于點.(1)如圖1,點在邊上,與交于點證明:;(2)如圖2,點在的延長線上,與交于點.①求的值;②若,求的值24.(10分)如圖,四邊形ABCD為圓內接四邊形,對角線AC、BD交于點E,延長DA、CB交于點F.(1)求證:△FBD∽△FAC;(2)如果BD平分∠ADC,BD=5,BC=2,求DE的長;(3)如果∠CAD=60°,DC=DE,求證:AE=AF.25.(12分)如圖,拋物線y=ax2+bx﹣3經過點A(2,﹣3),與x軸負半軸交于點B,與y軸交于點C,且OC=3OB.(1)求拋物線的解析式;(2)拋物線的對稱軸上有一點P,使PB+PC的值最小,求點P的坐標;(3)點M在拋物線上,點N在拋物線的對稱軸上,是否存在以點A,B,M,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.26.甲、乙兩名隊員參加射擊訓練,每人射擊10次,成績分別如下:根據以上信息,整理分析數據如下:平均成績/環中位數/環眾數/環方差甲a771.2乙7b8c(1)a=_____;b=_____;c=_____;(2)填空:(填“甲”或“乙”).①從平均數和中位數的角度來比較,成績較好的是_____;②從平均數和眾數的角度來比較,成績較好的是_____;?③成績相對較穩定的是_____.
參考答案一、選擇題(每題4分,共48分)1、A【分析】根據方程的系數結合根的判別式△>0;即可得出關于k的一元一次不等式;解之即可得出結論.【詳解】∵關于x的一元二次方程x2+(2k+1)x+k2=0有兩個不相等的實數根,∴△=(2k+1)2﹣4×1×k2=4k+1>0,∴k>﹣.故選A.【點睛】本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數根”是解題的關鍵.2、D【解析】利用垂徑定理和勾股定理計算.【詳解】根據勾股定理得,根據垂徑定理得AB=2AD=8故選:D.【點睛】考查勾股定理和垂徑定理,熟練掌握垂徑定理是解題的關鍵.3、D【解析】利用因式分解法求解即可得.【詳解】故選:D.【點睛】本題考查了利用因式分解法求解一元二次方程,主要解法包括:直接開方法、配方法、公式法、因式分解法、換元法等,熟記各解法是解題關鍵.4、D【分析】如圖,作MH⊥x軸于H.利用勾股定理求出OM,即可解決問題.【詳解】解:如圖,作MH⊥x軸于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα=,故選:D.【點睛】本題考查解直角三角形的應用,勾股定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.5、B【解析】根據中心對稱圖形的概念逐一判斷即可.【詳解】A.不是中心對稱圖形,故該選項不符合題意,B.是中心對稱圖形,符合題意,C.不是中心對稱圖形,故該選項不符合題意,D.不是中心對稱圖形,故該選項不符合題意,故選:B.【點睛】本題考查中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.6、C【分析】因為DE∥BC,所以可得△ADE∽△ABC,根據相似三角形的面積比等于相似比的平方解答即可.【詳解】解:∵DE∥BC,
∴△ADE∽△ABC,
∴,
∵AD:DB=1:2,
∴AD:AB=1:3,
∴,
∴△ADE的面積與四邊形DBCE的面積之比=1:8,
故選:C.【點睛】本題考查了相似三角形的判定與性質,熟記相似三角形面積的比等于相似比的平方是解題的關鍵.7、C【分析】根據三角形的外角的性質計算,得到答案.【詳解】∵∠GFA=90°,∠A=45°,∴∠CGD=45°,∴∠BDC=∠CGD+∠C=75°,故選:B.【點睛】本題考查的是三角形的外角性質,掌握三角形的一個外角等于和它不相鄰的兩個內角的和是解題的關鍵.8、C【解析】根據絕對值的定義,平行線的性質,平行四邊形的性質,不等式的性質判斷即可.【詳解】A、如果|a|=|b|,那么a=±b,故錯誤;B、平行四邊形對角線不一定相等,故錯誤;C、兩直線平行,同旁內角互補,故正確;D、如果a=1>b=﹣2,那么a2<b2,故錯誤;故選C.【點睛】本題考查了絕對值,不等式的性質,平行線的性質,平行四邊形的性質,熟練掌握各性質定理是解題的關鍵.9、D【解析】根據一元二次方程的定義和△的意義得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范圍.【詳解】∵關于x的一元二次方程kx2﹣2x+1=1有兩個不相等的實數根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范圍為k<1且k≠1.故選D.【點睛】本題考查了一元二次方程ax2+bx+c=1(a≠1)的根的判別式△=b2﹣4ac:當△>1,方程有兩個不相等的實數根;當△=1,方程有兩個相等的實數根;當△<1,方程沒有實數根.也考查了一元二次方程的定義.10、B【分析】根據隨機事件的定義逐項判斷即可.【詳解】A、點數之和等于1,是不可能事件,不合題意;B、點數之和等于9,是隨機事件,符合題意;C、點數之和大于1,是必然事件,不合題意;D、點數之和大于12,是不可能事件,不合題意;故選:B【點睛】本題考查事件的分類,事件根據其發生的可能性大小分為必然事件、隨機事件、不可能事件.隨機事件是指在一定條件下,可能發生也可能不發生的事件.11、D【分析】直接利用已知進行變形進而得出結果.【詳解】解:∵,∴3x+3y=5x,則3y=2x,那么=.故選:D.【點睛】本題考查了比例的性質,正確將已知變形是解題的關鍵.12、B【分析】根據題意可知當穿過孔洞三角尺為等邊三角形時,面積最大,故可求解.【詳解】根據題意可知當穿過孔洞三角尺為等邊三角形時,面積最大,∵孔洞的最長邊為∴S==故選B.【點睛】此題主要考查等邊三角形的面積求解,解題的關鍵是根據題意得到當穿過孔洞三角尺為等邊三角形時面積最大.二、填空題(每題4分,共24分)13、y=2x2+1.【分析】根據左加右減,上加下減的規律,直接得出答案即可.【詳解】解:∵拋物線y=2x2的圖象向上平移1個單位,∴平移后的拋物線的解析式為y=2x2+1.故答案為:y=2x2+1.【點睛】考查二次函數的平移問題;用到的知識點為:上下平移只改變點的縱坐標,上加下減.14、1【分析】根據幾何體的三視圖可進行求解.【詳解】解:根據題意得:則搭成該幾何體的小正方體最多是1+1+1+2+2=1(個).故答案為1.【點睛】本題主要考查幾何體的三視圖,熟練掌握幾何體的三視圖是解題的關鍵.15、【分析】先根據題目中提供的三個式子,分別計算的值,用含n的式子表示其規律,再計算S的值即可.【詳解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案為:【點睛】本題為規律探究問題,難度較大,根據提供的式子發現規律,并表示規律是解題的關鍵,同時要注意對于式子的理解.16、1【分析】根據AE:ED=1:2,得到BC=3AE,證明△DEF∽△BCF,得到,求出FC,即可求出CE.【詳解】解:∵AE:ED=1:2,∴DE=2AE,∵四邊形ABCD是平行四邊形,∴BC=AD=AE+DE=3AE,AD∥BC,∴△DEF∽△BCF,∴,∴∴FC=6,∴CE=EF+CF=1,故答案為:1.【知識點】本題考查平行四邊形的性質、相似三角形的判定與性質,理解相似三角形的判定與性質定理是解題關鍵.17、【分析】根據三視圖可得出該幾何體為圓錐,圓錐的表面積=底面積+側面積(側面積將圓錐的側面積不成曲線地展開,是一個扇形.),用字母表示就是S=πr2+πrl(其中l=母線,是圓錐的頂點到圓錐的底面圓周之間的距離).【詳解】解:由題意可知,該幾何體是圓錐,其中底面半徑為2,母線長為6,∴故答案為:.【點睛】本題考查的知識點是幾何體的三視圖以及圓錐的表面積公式,熟記圓錐的面積公式是解此題的關鍵.18、【分析】過點A作AE⊥AO,并使∠AEO=∠ABC,先證明,由三角函數可得出,進而求得,再通過證明,可得出,根據三角形三邊關系可得:,由勾股定理可得,求出BE的最大值,則答案即可求出.【詳解】解:過點A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根據三角形三邊關系可得:,∵,∴,∴BE的最大值為:,∴OC的最大值為:.【點睛】本題主要考查了三角形相似的判定和性質、三角函數、勾股定理及三角形三邊關系,解題的關鍵是構造直角三角形.三、解答題(共78分)19、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標為P(﹣,﹣)或(0,5).【解析】(1)將點A、B坐標代入二次函數表達式,即可求出二次函數解析式;(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數表達式并解得:直線BC的表達式為:y=x+1,設點G(t,t+1),則點P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設直線BP與CD交于點H,當點P在直線BC下方時,求出線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,、聯立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點;當點P(P′)在直線BC上方時,根據∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達式為:y=2x+5,聯立y=x2+6x+5和y=2x+5,求出x,即可求出P.【詳解】解:(1)將點A、B坐標代入二次函數表達式得:,解得:,故拋物線的表達式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點C(﹣1,0);(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數表達式并解得:直線BC的表達式為:y=x+1…②,設點G(t,t+1),則點P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當t=﹣時,其最大值為;②設直線BP與CD交于點H,當點P在直線BC下方時,∵∠PBC=∠BCD,∴點H在BC的中垂線上,線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,設BC中垂線的表達式為:y=﹣x+m,將點(﹣,﹣)代入上式并解得:直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,聯立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯立①⑤并解得:x=﹣或﹣4(舍去﹣4),故點P(﹣,﹣);當點P(P′)在直線BC上方時,∵∠PBC=∠BCD,∴BP′∥CD,則直線BP′的表達式為:y=2x+s,將點B坐標代入上式并解得:s=5,即直線BP′的表達式為:y=2x+5…⑥,聯立①⑥并解得:x=0或﹣4(舍去﹣4),故點P(0,5);故點P的坐標為P(﹣,﹣)或(0,5).【點睛】本題考查的是二次函數,熟練掌握拋物線的性質是解題的關鍵.20、(1)證明見解析;(2)證明見解析;(3)EF=【解析】分析:(1)由翻折知△ABC≌△ABD,得∠ADB=∠C=90°,據此即可得;(2)由AB=AD知AB2=AD?AE,即,據此可得△ABD∽△AEB,即可得出∠ABE=∠ADB=90°,從而得證;(3)由知DE=1、BE=,證△FBE∽△FAB得,據此知FB=2FE,在Rt△ACF中根據AF2=AC2+CF2可得關于EF的一元二次方程,解之可得.詳解:(1)∵AB為⊙O的直徑,∴∠C=90°,∵將△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴點D在以AB為直徑的⊙O上;(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC?AE,∴AB2=AD?AE,即,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB為⊙O的直徑,∴BE是⊙O的切線;(3)∵AD=AC=4、BD=BC=2,∠ADB=90°,∴AB=,∵,∴,解得:DE=1,∴BE=,∵四邊形ACBD內接于⊙O,∴∠FBD=∠FAC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD,∴△FBE∽△FAB,∴,即,∴FB=2FE,在Rt△ACF中,∵AF2=AC2+CF2,∴(5+EF)2=42+(2+2EF)2,整理,得:3EF2-2EF-5=0,解得:EF=-1(舍)或EF=,∴EF=.點睛:本題主要考查圓的綜合問題,解題的關鍵是掌握圓周角定理、翻折的性質、圓內接四邊形的性質及相似三角形的判定與性質、勾股定理等知識點.21、1-【解析】利用零指數冪和絕對值的性質、特殊角的三角函數值、負指數次冪的性質進行計算即可.【詳解】解:原式=.【點睛】本題考查了零指數冪和絕對值的性質、特殊角的三角函數值、負指數次冪的性質,熟練掌握性質及定義是解題的關鍵.22、(1)①見解析;②見解析;(1)1π.【分析】(1)①利用點平移的坐標規律,分別畫出點A、B、C的對應點A1、B1、C1的坐標,然后描點可得△A1B1C1;②利用網格特點和旋轉的性質,分別畫出點A1、B1、C1的對應點A1、B1、C1即可;(1)根據弧長公式計算.【詳解】(1)①如圖,△A1B1C1為所作;②如圖,△A1B1C1為所作;(1)點C1在旋轉過程中所經過的路徑長=【點睛】本題考查了作圖﹣旋轉變換:根據旋轉的性質可知,對應角都相等,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.也考查了平移的性質.23、(1)證明見解析;(2)①;②1.【分析】(1)先根據平行線的性質可得,再根據相似三角形的判定即可得證;(2)①設,則,,先根據平行線的性質可得,再根據三角形全等的判定定理與性質可得,然后根據相似三角形的判定與性質可得,由此即可得;②先求出,再在中,利用勾股定理可得,然后根據①中三角形全等的性質可得,最后根據①中相似三角形的性質即可得.【詳解】(1);①設,則,是邊上的中線在和中,;②在中,由①已證:由①已證:.【點睛】本題考查了平行線的性質、相似三角形的判定與性質、三角形全等的判定定理與性質、勾股定理等知識點,熟練掌握相似三角形的判定與性質是解題關鍵.24、(1)見解析;(2);(3)見解析【分析】(1)可得出∠ADB=∠ACB,∠AFC=∠BFD,則結論得證;(2)證明△BEC∽△BCD,可得,可求出BE長,則DE可求出;(3)根據圓內接四邊形的性質和三角形的內角和定理進行證明AB=AF;根據等腰三角形的判定與性質和圓周角定理可證明AE=AB,則結論得出.【詳解】(1)證明:∵∠ADB=∠ACB,∠AFC=∠BFD,∴△FBD∽△FAC;(2)解:∵BD平分∠ADC,∴∠ADB=∠BDC,∵∠ADB=∠ACB,∴∠ACB=∠BDC,∵∠EBC=∠CBD,∴△BEC∽△BCD,∴,∴,∴BE=,∴DE=BD﹣BE=5﹣=;(3)證明:∵∠CAD=60°,∴∠CBD=60°,∠ACD=∠ABD,∵DC=DE,∴∠ACD=∠DEC,∵∠ABC+∠ADC=∠ABC+∠ABF=180°,∴∠FBD=180°,∴∠ABF=∠ADC=120°=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,而∠F=60°﹣∠ACF,∵∠ACF=∠ADE,∴∠ABF=∠F,∴AB=AF.∵四邊形ABCD內接于圓,∴∠ABD=∠ACD,又∵DE=DC,∴∠DCE=∠DEC=∠AEB,∴∠ABD=∠AEB,∴AB=AE.∴AE=AF.【點睛】本題是圓的綜合題,考查了圓內接四邊形的性質,圓周角定理,相似三角形的判定與性質,等腰三角形的判定與性質,角平分線的性質,三角形的內角和定理等知識,熟練掌握相似三角形的判定與性質是解題的關鍵.25、(1)(2)點P的坐標;(3)M【分析】(1)待定系數法即可得到結論;(2)根據線段垂直平分線上的點到線段兩端點的距離相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司與個人勞動合同(4篇)
- 農業生產技術應用合作合同書
- 合作酒店經營合同(3篇)
- 退休人員合同(5篇)
- 地理學城鄉規劃與管理試題庫
- 微積分上冊考試題及答案
- 線上商城訂單處理合同
- 農戶互助資金貸款及擔保合同書
- 行政領導與團隊合作的考量試題及答案
- 市直國企面試題目及答案
- 項目陪跑協議書
- 口腔種植手術協議書
- 小學英語-國際音標-練習及答案
- 2025-2030年國有銀行行業市場深度分析及競爭格局與投資發展研究報告
- 2025年建筑模板制品行業深度研究報告
- 掛名股東簽署協議書
- 提前預付工資協議書
- 湖北省荊門市2025年七年級下學期語文期末考試試卷及答案
- 2025年勞動與社會保障政策考試試題及答案
- 2025年湖北省新高考信息卷(一)物理試題及答案
- 消毒供應中心進修總結匯報
評論
0/150
提交評論