




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
函數(shù)的概念及其表示函數(shù)的概念課時1函數(shù)的概念(一)1.判斷下列說法是否正確(正確的打“√”,錯誤的打“×”).(1)函數(shù)值域中的每一個值都有定義域中的一個值與它對應(yīng).(√)(2)f(a)表示當自變量x=a時,函數(shù)y=f(x)的值.(√)(3)函數(shù)的定義域是無限集,則值域也是無限集.(×)2.(多選題)下列關(guān)于函數(shù)y=f(x)的說法正確的是(AD)A.y是x的函數(shù)B.x是y的函數(shù)C.對于不同的x,y也不同D.當x=a時,f(a)有且只有一個解析:根據(jù)函數(shù)的定義知B錯誤;對于不同的x,y可以相同,C錯誤;A,D正確.題型1函數(shù)概念的理解3.[2020·杭州高一期中]下列關(guān)于x,y的解析式中,y可以表示為x的函數(shù)解析式的是(D)A.x2+y2=1 B.|x|+|y|=1C.x3+y2=1 D.x2+y3=1解析:+y2=1,當x=0時,y=±1,不滿足函數(shù)的概念;B.|x|+|y|=1,當x=0時,y=±1,不滿足函數(shù)的概念;+y2=1,當x=0時,y=±1,不滿足函數(shù)的概念;+y3=1,y=eq\r(3,1-x2),滿足函數(shù)的概念.4.函數(shù)y=f(x),x∈R的圖象與直線x=2020的交點個數(shù)是(C)A.0 B.0或1C.1 D.1或2020解析:由函數(shù)定義可得,定義域內(nèi)一個自變量x只有唯一確定的y與之對應(yīng),因為x∈R,所以x=2020與函數(shù)y=f(x)只有一個交點,故選C.5.(多選題)集合A={x|0≤x≤4},B={y|0≤y≤2},下列不能表示從A到B的函數(shù)的是(BC)A.f:x→y=eq\f(1,2)x B.f:x→y=2xC.f:x→y=eq\f(2,3)x D.f:x→y=eq\r(x)解析:B選項中,當x=4時,y=24=16?B,因此B選項不能表示從A到B的函數(shù);C選項的對應(yīng)關(guān)系是f:x→y=eq\f(2,3)x,可得f(4)=eq\f(8,3)?B,不滿足函數(shù)的定義,其他選項均符合函數(shù)的定義.題型2求函數(shù)的值6.已知f(x)=eq\f(2,x),則feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))=(D)A.eq\f(2,3) B.eq\f(1,3)C.3 D.67.已知f(x)=eq\f(1,x2+1).求f(-1),f(0)和f(2).解:由已知可得,f(-1)=eq\f(1,-12+1)=eq\f(1,2),f(0)=eq\f(1,02+1)=1,f(2)=eq\f(1,22+1)=eq\f(1,5).題型3求函數(shù)的定義域8.函數(shù)y=eq\r(1-x)的定義域是(A)A.{x|x≤1} B.{x|x<1}C.{x|x≥1} D.{x|0≤x≤1}9.[2020·銀川高一期中]函數(shù)f(x)=eq\f(\r(3-x),x-1)的定義域是__{x|x≤3且x≠1}__.10.求下列函數(shù)的定義域.(1)f(x)=eq\r(1-x)+eq\r(x+3)-1;(2)f(x)=eq\r(x+5)+eq\f(1,x+2).解:(1)由eq\b\lc\{\rc\(\a\vs4\al\co1(1-x≥0,,x+3≥0,))得函數(shù)的定義域為{x|-3≤x≤1}.(2)由eq\b\lc\{\rc\(\a\vs4\al\co1(x+5≥0,,x+2≠0,))得函數(shù)的定義域為{x|x≥-5且x≠-2}.易錯點1對函數(shù)y=f(x)的含義不理解致錯11.[2020·北京高一期中]如圖,A,B,C是函數(shù)y=f(x)的圖象上的三點,其中A(1,3),B(2,1),C(3,2),則f(f(3))的值為(B)A.0 B.1C.2 D.3解析:根據(jù)圖象可知,f(3)=2,f(2)=1,所以f(f(3))=f(2)=1.[誤區(qū)警示]計算f(f(3))時應(yīng)先計算f(3)的值,再代入計算f(f(3))的值.易錯點2對函數(shù)的概念不理解而致錯12.下列從集合A到集合B的對應(yīng)關(guān)系f是函數(shù)的是(A)A.A={-1,0,1},B={0,1},f:A中的數(shù)平方B.A={0,1},B={-1,0,1},f:A中的數(shù)開方C.A=Z,B=Q,f:A中的數(shù)取倒數(shù)D.A={平行四邊形},B=R,f:求A中平行四邊形的面積解析:B項中,集合A中的元素1對應(yīng)集合B中的元素1和-1,不符合函數(shù)的定義;C項中,集合A中的元素0取倒數(shù)沒有意義,在集合B中沒有元素與之對應(yīng),不符合函數(shù)的定義;D項中,A集合不是數(shù)集,故不符合函數(shù)的定義.[誤區(qū)警示]解題時要理解對應(yīng)關(guān)系是什么,對應(yīng)是否滿足函數(shù)的定義.(限時30分鐘)一、選擇題1.下列圖象中不能表示函數(shù)的圖象的是(D)2.[2020·黃山高一期中]設(shè)集合A={x|1≤x≤2},B={y|1≤y≤4},則下列對應(yīng)關(guān)系f中,不能構(gòu)成從集合A到集合B的函數(shù)的是(D)A.f:x→y=x2 B.f:x→y=3x-2C.f:x→y=-x+4 D.f:x→y=4-x2解析:當1≤x≤2時,1≤x2≤4,可知y=x2構(gòu)成函數(shù);當1≤x≤2時,1≤3x-2≤4,故y=3x-2構(gòu)成函數(shù);當1≤x≤2時,2≤4-x≤3,此時y=-x+4構(gòu)成函數(shù).當1≤x≤2時,0≤4-x2≤3,0不在集合B中,故y=4-x2不能構(gòu)成從集合A到集合B的函數(shù).3.函數(shù)f(x)=eq\f(\r(x-3),|x+1|-5)的定義域為(B)A.{x|x≥3} B.{x|x≥3,且x≠4}C.{x|x>3} D.{x|3≤x<4}4.(原創(chuàng)題)設(shè)f(x)=eq\f(x2-1,x2+1),則eq\f(f2,f\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2))))等于(B)A.1 B.-1C.eq\f(3,5) D.-eq\f(3,5)解析:f(2)=eq\f(22-1,22+1)=eq\f(4-1,4+1)=eq\f(3,5),feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))=eq\f(\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))2-1,\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))2+1)=eq\f(\f(1,4)-1,\f(1,4)+1)=-eq\f(3,5),所以eq\f(f2,f\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2))))=-1.5.若函數(shù)f(x)=ax2-1,a為一個正常數(shù),且f(f(-1))=-1,那么a的值是(A)A.1 B.0C.-1 D.2解析:f(-1)=a·(-1)2-1=a-1,f(f(-1))=a·(a-1)2-1=a3-2a2+a-1=-1.所以a3-2a2+a=0,所以a=1或a=0(舍去).二、填空題6.設(shè)f(x)=2x2+2,g(x)=eq\f(1,x+2),則g(f(2))=eq\f(1,12).解析:因為f(x)=2x2+2,所以f(2)=10,所以g(f(2))=g(10)=eq\f(1,10+2)=eq\f(1,12).7.已知函數(shù)f(x)=eq\f(1,1+x),又知f(t)=6,則t=-eq\f(5,6).解析:由f(t)=6,得eq\f(1,1+t)=6,即t=-eq\f(5,6).8.函數(shù)f(x)=eq\r(x+1)+eq\f(1,2-x)的定義域為__{x|-1≤x<2或x>2}__.解析:由題意,要使函數(shù)f(x)=eq\r(x+1)+eq\f(1,2-x)有意義,則eq\b\lc\{\rc\(\a\vs4\al\co1(x+1≥0,,2-x≠0,))解得-1≤x<2或x>2,所以函數(shù)f(x)的定義域為{x|-1≤x<2或x>2}.三、解答題9.已知函數(shù)f(x)=eq\r(x+3)+eq\f(1,x+2).(1)求f(-3),feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))的值;(2)當a>0時,求f(a),f(a-1)的值.解:(1)f(-3)=-1,feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))=eq\f(3,8)+eq\f(\r(33),3).(2)當a>0時,f(a)=eq\r(a+3)+eq\f(1,a+2);a-1>-1,所以f(a-1)=eq\r(a+2)+eq\f(1,a+1).10.求下列函數(shù)的定義域.(1)y=2eq\r(x)-eq\r(1-7x);(2)y=eq\f(x+10,\r(x+2));(3)y=eq\r(2x+3)-eq\f(1,\r(2-x))+eq\f(1,x).解:(1)由eq\b\lc\{\rc\(\a\vs4\al\co1(x≥0,,1-7x≥0,))得0≤x≤eq\f(1,7),所以函數(shù)y=2eq\r(x)-eq\r(1-7x)的定義域為eq\b\lc\{\rc\|(\a\vs4\al\co1(x))0≤x≤eq\f(1,7).(2)由于0的零次冪無意義,故x+1≠0,即x≠-1.又x+2>0,即x>-2,所以x>-2且x≠-1.所以函數(shù)y=eq\f(x+10,\r(x+2))的定義域為{x|x>-2且x≠-1}.(3)要使函數(shù)有意義,需eq\b\lc\{\rc\(\a\vs4\al\co1(2x+3≥0,,2-x>0,,x≠0,))解得-eq\f(3,2)≤x<2,且x≠0,所以函數(shù)y=eq\r(2x+3)-eq\f(1,\r(2-x))+eq\f(1,x)的定義域為eq\b\lc\{\rc\|(\a\vs4\al\co1(x))-eq\f(3,2)≤x<2,且x≠0.11.(改編題)已知函數(shù)f(x)=eq\r(3-x)-eq\f(1,\r(x-1))的定義域為集合A,集合B={x|2m≤x≤1-m}.(1)當m=-1時,求A∪B;(2)若A?B,求實數(shù)m的取值范圍;(3)若A∩B=?,求實數(shù)m的取值范圍.解:(1)對于函數(shù)y=f(x),有eq\b\lc\{\rc\(\a\vs4\al\co1(3-x≥0,,x-1>0,))解得1<x≤3,所以A={x|1<x≤3}.當m=-1時,B={x|-2≤x≤2},因此,A∪B={x|-2≤x≤3}.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度河北省護師類之護士資格證通關(guān)提分題庫(考點梳理)
- 2025江蘇揚州寶應(yīng)縣“鄉(xiāng)村振興青年人才”招聘67人筆試備考題庫及完整答案詳解一套
- 2025江蘇揚州現(xiàn)代農(nóng)業(yè)生態(tài)環(huán)境投資發(fā)展集團招聘筆試備考題庫及一套完整答案詳解
- 2024年河北邯鄲叢臺區(qū)公開招聘教師200名筆試備考題庫及參考答案詳解1套
- 2025年東營市公務(wù)員考試行測試卷歷年真題及答案詳解一套
- 2019-2025年安全員之A證(企業(yè)負責人)全真模擬考試試卷B卷含答案
- 2019-2025年土地登記代理人之土地登記代理實務(wù)綜合練習試卷A卷附答案
- 慢性疾病管理 實踐中的護理策略
- 日常妝容 打造清新自然妝
- 房地產(chǎn)項目的市場營銷與品牌建設(shè)
- 初中生物2021年初專題周練-血液循環(huán)訓(xùn)練題(一)【含詳解】
- BMS電池管理系統(tǒng)
- 4.2.2光柵傳感器測量位移
- 四川省成都市(2024年-2025年小學六年級語文)部編版小升初模擬(上學期)試卷及答案
- 智能樓宇管理員題庫含答案
- SCMP練習試卷附答案(一)
- 國家開放大學《金融學》機考題庫
- 江蘇省蘇州市(2024年-2025年小學六年級語文)部編版小升初真題(下學期)試卷及答案
- 證據(jù)法學復(fù)習資料
- 【MOOC】機械工程測試技術(shù)-東南大學 中國大學慕課MOOC答案
- 【MOOC】人格與精神障礙-學做自己的心理醫(yī)生-暨南大學 中國大學慕課MOOC答案
評論
0/150
提交評論