




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
會(huì)計(jì)學(xué)1常用模擬低通濾波器的設(shè)計(jì)一、為何要設(shè)計(jì)模擬低通濾波器首先將要設(shè)計(jì)的數(shù)字濾波器的指標(biāo),轉(zhuǎn)變成模擬低通原型濾波器的指標(biāo)后,設(shè)計(jì)“模擬低通原型”濾波器。模擬濾波器的設(shè)計(jì)(逼近)不屬于本課程的范圍,但由于沒學(xué)過,在此介紹常用的二種模擬低通濾波器的設(shè)計(jì)。1、Butterworth巴特渥斯濾波器2、Chebyshev切比雪夫?yàn)V波器它們都有嚴(yán)格的設(shè)計(jì)公式,現(xiàn)成的曲線和圖表供設(shè)計(jì),它們?yōu)V波器各有特點(diǎn)。第1頁/共64頁典型模擬濾波器的特點(diǎn)1、Butterworth巴特渥斯濾波器它具有單調(diào)下降的幅頻特性;即最平幅度。2、Chebyshev切比雪夫?yàn)V波器在通帶或阻帶等波紋,可提高選擇性。3.Bessel貝塞爾濾波器在通帶內(nèi)有較好的線性相位特性。4.Ellipse橢圓濾波器其選擇性相對前三種是最好的。第2頁/共64頁二、模擬濾波器設(shè)計(jì)思想根據(jù)模擬濾波器設(shè)計(jì)要求,求出相應(yīng)的模擬系統(tǒng)函數(shù).使其逼近某個(gè)理想濾波器的特性。(濾波器的特性包括有:幅度特性、相位特性/群時(shí)延特性),在此我們采用幅度平方函數(shù)特性來設(shè)計(jì)。第3頁/共64頁三、根據(jù)幅度平方函數(shù)確定系統(tǒng)函數(shù)
1、求濾波器的幅度平方函數(shù)設(shè)計(jì)模擬濾波器經(jīng)常要借助其幅度平方函數(shù)其中:Ha(s)是模擬濾波器的系統(tǒng)函數(shù)。假設(shè)p1,z1為Ha(s)的一個(gè)零點(diǎn)和一個(gè)極點(diǎn),則-p1,-z1必為Ha(-s)的一個(gè)零點(diǎn)和極點(diǎn),Ha(s)、Ha(-s)的零極點(diǎn)成象限對稱分布。所以必然有如下形式:**-z1-p1z1p1**第4頁/共64頁2、根據(jù)幅度平方函數(shù)設(shè)計(jì)模擬濾波器的系統(tǒng)函數(shù)的步驟我們知道,實(shí)際濾波器都是穩(wěn)定的,因此其極點(diǎn)一定位于S平面左半平面,這樣可根據(jù)幅度平方函數(shù)通過如下步驟分配零、極點(diǎn)來設(shè)計(jì)出模擬濾波器的系統(tǒng)函數(shù)。(1)由來確定象限對稱的S平面函數(shù)。(2)將因式分解,得到各零點(diǎn)和極點(diǎn)。(3)按照與Ha(s)的低頻特性或高頻特性的對比就可確定出增益常數(shù)。
第5頁/共64頁(1)由來確定象限對稱的S平面函數(shù)。
將代入中即得到s平面函數(shù)。第6頁/共64頁(2)將因式分解,得到各零點(diǎn)和極點(diǎn)。將左半平面的極點(diǎn)歸于Ha(s)。如無特殊要求,可取的對稱零點(diǎn)的任一半作為Ha(s)的零點(diǎn)。如要求是最小相位延時(shí)濾波器,則應(yīng)取左半平面零點(diǎn)作為Ha(s)的零點(diǎn)。且軸上的零點(diǎn)或極點(diǎn)都是偶次的,其中一半屬于Ha(s)
。
第7頁/共64頁(3)按照與Ha(s)的低頻特性或高頻特性,確定出增益常數(shù)。由的條件,代入可求得增益常數(shù)。第8頁/共64頁例子根據(jù)以下幅度平方函數(shù)確定系統(tǒng)函數(shù)Ha(s).第9頁/共64頁四、Butterworth巴特渥斯低通濾波器
1、幅度平方函數(shù)Butterworth低通濾波器具有通帶最平幅度逼近
特性,是一全極點(diǎn)型濾波器,且極點(diǎn)均勻分布上Ωc的圓上,并且與虛軸對稱。其最主要特點(diǎn):在通帶內(nèi),幅頻最平坦,隨著頻率的升高而單調(diào)下降。其幅度平方函數(shù)為其中N為整數(shù),表示濾波器的階次,Ωc定義為截止頻率,為振幅響應(yīng)衰減到-3dB處的頻率。第10頁/共64頁2、Butterworth濾波器的極點(diǎn)分布
由可知Butterworth的零點(diǎn)全部在S=∞處,它是全極點(diǎn)型濾波器,且分布在半徑為Ωc的圓上,呈象限對稱分布。為了得到穩(wěn)定的濾波器,s左半平面的極點(diǎn)必須分配給Ha(s),s右半平面的極點(diǎn)分配給Ha(-s)。取其分布在左平面的極點(diǎn),設(shè)計(jì)出巴特沃斯低通濾波器.第11頁/共64頁3、Butterworth的幅度響應(yīng)
及極點(diǎn)分布其中左半平面構(gòu)成Butterworth濾波器的系統(tǒng)函數(shù)極點(diǎn)不會(huì)落在S平面上的虛軸上第12頁/共64頁4、Butterworth濾波器階數(shù)N與幅度響應(yīng)的關(guān)系當(dāng)N增大時(shí),濾波器的特性曲線變得陡峭,則更接近理想矩形幅度特性。第13頁/共64頁5、3dB帶寬第14頁/共64頁6、Butterworth濾波器的特點(diǎn)(總結(jié))(1)當(dāng)Ω=0時(shí),即Ω=0處無衰減。(2)當(dāng)Ω=Ωc時(shí),在止帶內(nèi)的逼近是單調(diào)變化的,不管N為多少,所有幅頻特性曲線都經(jīng)過-3dB點(diǎn),或說衰減3dB,這就是3dB不變性。或通帶最大衰減第15頁/共64頁(3)在Ω<Ωc的通帶內(nèi):前(2N-1)階導(dǎo)數(shù)為零,因而Butterworth又稱最平幅度特性濾波器。隨著Ω由0變到Ωc,|Ha(jΩ)|2單調(diào)減小,N越大,減小越慢,也就是通帶內(nèi)特性越平坦。有最大平坦的幅度特性,即N階Butterworth低通濾波器在Ω=0處:第16頁/共64頁(4)在Ω>Ωc,即在過渡帶及阻帶中,|Ha(jΩ)|2
也隨Ω增加而單調(diào)減小,但是Ω/Ωc>1,故比通帶內(nèi)衰減的速度要快得多,N越大,衰減速度越大。當(dāng)Ω=Ωs
,即頻率為阻帶截止頻率時(shí),衰減為:(5)濾波器的特性完全由其階數(shù)N決定。N越大,則通帶內(nèi)在更大范圍內(nèi)更接近于1,在止帶內(nèi)迅速地接近于零,因而幅頻特性更接近于理想的矩形頻率特性。2為阻帶最小衰減。第17頁/共64頁7、歸一化的Butterworth濾波器的系統(tǒng)函數(shù)在一般設(shè)計(jì)中,都先把Ωc設(shè)為1rad/s,這樣使頻率得到歸一化。歸一化的Butterworth濾波器的極點(diǎn)分布以及相應(yīng)系數(shù)都有現(xiàn)成表可查。即若令第18頁/共64頁8、Butterworth濾波器設(shè)計(jì)步驟
(1)根據(jù)設(shè)計(jì)規(guī)定,確定Ωc和N。(2)由確定Ha(s)Ha(-s)的極點(diǎn)。(3)Sk
的前N個(gè)值(k=1,2,...,N),即Re(Sk)<0部分的極點(diǎn),構(gòu)成Ha(s).(4)常數(shù)K0
可由A(Ω)和Ha(s)的低頻或高頻特性對比確定。
第19頁/共64頁9、例子導(dǎo)出Butterworth低通濾波器的系統(tǒng)函數(shù),設(shè)Ωc=1rad/s,N=3。解:方法一:根據(jù)幅度平方函數(shù):第20頁/共64頁方法二方法二:由于Ωc=1rad/s,查表得第21頁/共64頁10、Butterworth濾波器的階數(shù)N設(shè)計(jì)公式第22頁/共64頁(1)已知Ωc、Ωs和As求ButterworthDF階數(shù)N第23頁/共64頁(2)已知Ωc、Ωs和Ω=Ωp的衰減Ap求ButterworthDF階數(shù)N第24頁/共64頁(3)已知Ωp、Ωs和Ω=Ωp的衰減Ap和As求ButterworthDF階數(shù)N第25頁/共64頁例子1試設(shè)計(jì)一個(gè)模擬低通Butterworth濾波器取N=3階,根據(jù)N=3,查表得歸一化系統(tǒng)函數(shù):第26頁/共64頁第27頁/共64頁例子2設(shè)低通DF的3dB帶寬頻率wc=0.2π,止帶頻率ws=0.4π,在w=ws處的止帶衰減20lg|H(ejws)|=-15dB,試用脈沖響應(yīng)不變法(沖激不變法)設(shè)計(jì)一個(gè)Butterworth低通DF。(設(shè)采樣頻率fs=20kHz)解:設(shè)計(jì)分為4步。(1)將數(shù)字濾波器的設(shè)計(jì)指標(biāo)轉(zhuǎn)變?yōu)槟M濾波器的設(shè)計(jì)指標(biāo)。因?yàn)椋篺s=20kHz,則采樣間隔為T=1/fs=1/20kHz第28頁/共64頁對于沖激不變法,頻率變換是線性的。第29頁/共64頁(2)設(shè)計(jì)Ha(s)將上述設(shè)計(jì)指標(biāo)代入求出N階數(shù)第30頁/共64頁第31頁/共64頁第32頁/共64頁第33頁/共64頁x(n)0.534-0.5331.2411.599y(n)0.5341.241-0.5331.0010.306y(n)x(n)并聯(lián)型級聯(lián)型第34頁/共64頁例子3試用雙線性變換法設(shè)計(jì)Butterworth低通DF。已知低通DF的3dB帶寬頻率,止帶起始頻率,在處的止帶衰減解:(1)將DF的設(shè)計(jì)指標(biāo)轉(zhuǎn)換為模擬濾波器的設(shè)計(jì)指標(biāo)。對雙線性變換法根據(jù)3dB帶寬頻率第35頁/共64頁第36頁/共64頁第37頁/共64頁1.試設(shè)計(jì)一個(gè)模擬低通Butterworth(BW)型濾波器,要求截止頻率fp=5kHz,通帶最大衰減Ap=3dB,阻帶起始頻率fs=10kHz,阻帶衰減As=30dB。作業(yè)第38頁/共64頁五、切貝雪夫低通濾波器Chebyshev
1、引入原因Butterworth濾波器頻率特性,無論在通帶與阻帶都隨頻率而單調(diào)變化,因此如果在通帶邊緣滿足指標(biāo),則在通帶內(nèi)肯定會(huì)有富裕量,也就是會(huì)超過指標(biāo)的要求,因而并不經(jīng)濟(jì)。更有效的方法是將指標(biāo)的精度要求均勻地分布在通帶內(nèi),或均勻分布在阻帶內(nèi),或同時(shí)均勻在通帶與阻帶內(nèi),這時(shí)就可設(shè)計(jì)出階數(shù)較低的濾波器。這種精度均勻分布的辦法可通過選擇具有等波紋特性的逼近函數(shù)來完成。第39頁/共64頁2、Chebyshev濾波器的種類
在一個(gè)頻帶中,通帶或阻帶具有這種等紋特性可分為:(1)ChebyshevI型:在通帶中是等波紋的,在阻帶內(nèi)是單調(diào)的;(2)ChebyshevII型:在通帶中是單調(diào)的,在阻帶內(nèi)是等波紋的;由應(yīng)用的要求,決定采用哪種型式的Chebyshev濾波器第40頁/共64頁(1)ChebyshevI型幅頻特性和零極點(diǎn)圖(N=3)N=3ChebyshevI型,下面我們僅講此類型第41頁/共64頁(2)ChebyshevII型幅頻特性和零極點(diǎn)圖(N=3)N=3ChebyshevII型,其設(shè)計(jì)思想同ChebyshevI型,在此課程中我們就不作介紹。第42頁/共64頁3、ChebyshevI型幅度平方函數(shù)ChebyshevI型模擬濾波器的振幅平方函數(shù)為:第43頁/共64頁4、CN(x):N階Chebyshev多項(xiàng)式
(1)函數(shù)Chebyshev多項(xiàng)式:第44頁/共64頁(2)Chebyshev多項(xiàng)式圖形01-11-1xC4(x)C5(x)CN(x)第45頁/共64頁5、通帶等波紋振蕩第46頁/共64頁6、確定通帶內(nèi)波紋值ε第47頁/共64頁7、確定階數(shù)N
(1)N階特性階數(shù)N等于通帶內(nèi)最大和最小值個(gè)數(shù)的總和。可由幅頻特性中看出N階數(shù)。且當(dāng):N=奇數(shù),則Ω=0處有一最大值,N=偶數(shù),則Ω=0處有一最小值。N=3和N=5N=4和N=6第48頁/共64頁(2)N階公式由止帶起始點(diǎn)s處的關(guān)系求出Chebyshev的階數(shù)。第49頁/共64頁8、求濾波器的系統(tǒng)函數(shù)Ha(s)
(1)求極點(diǎn)--1第50頁/共64頁8、求濾波器的系統(tǒng)函數(shù)Ha(s)
(1)求極點(diǎn)--2第51頁/共64頁8、求濾波器的系統(tǒng)函數(shù)Ha(s)
(1)求極點(diǎn)--3ChebyshevI型濾波器的極點(diǎn),是一組分布在以bc為長軸,以ac處為短軸的橢園上的點(diǎn)。第52頁/共64頁9、ChebyshevI型濾波器的歸一化系統(tǒng)函數(shù)若N=偶數(shù)時(shí),當(dāng)s=0時(shí),即=0。式中,k為歸一化系數(shù)。若N=奇數(shù)時(shí),當(dāng)s=0時(shí),即=0。第53頁/共64頁則歸一化后的Chebyshev濾波器系統(tǒng)函數(shù)為第54頁/共64頁10、ChebyshevDF設(shè)計(jì)步驟①首先要先確定ε,N和Ωc。②計(jì)算a,b。③確定Ha(s)Ha(-s)的極點(diǎn)。④取Re(Si)<0的極點(diǎn),得到Ha(s)。
k可由A(Ω)和Ha(s)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)作物種子高效加工設(shè)備項(xiàng)目投資風(fēng)險(xiǎn)評估報(bào)告
- 藥用動(dòng)物養(yǎng)殖的現(xiàn)狀及其可持續(xù)資源利用分析
- 微課在高中英語課堂教學(xué)中的應(yīng)用研究
- 雙減背景下小學(xué)數(shù)學(xué)教學(xué)減負(fù)增效的策略探索
- 文化IP的年輕化與社交化運(yùn)營路徑-洞察闡釋
- 腎病性高血壓患者隨訪管理與干預(yù)策略優(yōu)化-洞察闡釋
- 綠色紡織材料在機(jī)織服裝中的研究-洞察闡釋
- 鄭州財(cái)經(jīng)學(xué)院《市場營銷理論與實(shí)務(wù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 福州黎明職業(yè)技術(shù)學(xué)院《新營銷與創(chuàng)業(yè)》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)科試卷題目及答案解析
- 2025安全月競賽應(yīng)知應(yīng)會(huì)1000題庫(必答題 搶答題 風(fēng)險(xiǎn)題)
- 2025年高考語文全國一卷試題真題及答案詳解(精校打印)
- 消防堵漏工具課件
- 2024年成都市八年級(初二會(huì)考)中考地理+生物真題試卷
- 福建福建省紅十字基金會(huì)人員招聘筆試歷年參考題庫附帶答案詳解
- 無人機(jī)緊急應(yīng)變方案試題及答案
- 電纜徑路圖信號工程施工課件
- 2024北京海淀區(qū)四年級(下)期末數(shù)學(xué)試題及答案
- 體檢中心質(zhì)量控制指南
- 星期音樂會(huì)智慧樹知到期末考試答案章節(jié)答案2024年同濟(jì)大學(xué)
- 生命哲學(xué):愛、美與死亡智慧樹知到期末考試答案2024年
評論
0/150
提交評論