




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter19
TheTricarboxylicAcidCycle[tra?,kɑ?b?k's?l?k]Chapter19
TheTricarboxylicA食品生物化學(xué)Chapter-19-The-Tricarboxylic-Acid-Cycle課件Aerobiccellsuseametabolicwheel--thetricarboxylicacidcycle
三羧酸循環(huán)
(alsocalledthecitricacidcycle
檸檬酸循環(huán),orKrebscycle)—togenerateenergybyacetyl-CoAoxidation.Aerobiccellsuseametabolic19.1HansKrebsandtheDiscoveryoftheTCACycle19.2TheTCACycle—ABriefSummary19.3TheBridgingStep:OxidativeDecarboxylationofPyruvate19.4EntryintotheCycle:TheCitrateSynthaseReaction19.5TheIsomerizationofCitratebyAconitase19.6IsocitrateDehydrogenase—TheFirstOxidationintheCycle19.7-KetoglutarateDehydrogenase—ASecondDecarboxylation19.8Succinyl-CoASynthetase—ASubstrate-LevelPhosphorylation19.9SuccinateDehydrogenase—AnOxidationInvolvingFAD19.10FumaraseCatalyzesTrans-HydrationofFumarate19.11MalateDehydrogenase—CompletingtheCycle19.12ASummaryoftheCycle19.13TheTCACycleProvidesIntermediatesforBiosyntheticPathways19.14TheAnaplerotic,or“FillingUp,”Reactions19.15RegulationoftheTCACycle19.16TheGlyoxylateCycleofPlantsandBacteriaOUTLINE19.1HansKrebsandtheDiscoTricarboxylicAcidCycleTricarboxylicAcidCyclePyruvateproducedinglycolysisisoxidizedinthetricarboxylicacid(TCA)cycle.ElectronsliberatedinthisoxidationflowthroughtheelectrontransportchainanddrivethesynthesisofATPinoxidativephosphorylation.Ineukaryoticcells,thisoverallprocessoccursinmitochondria.Pyruvateproducedinglycolysi19.1HansKrebsandtheDiscoveryoftheTCACycleIn1932Krebswasstudyingtheratesofoxidationofsmallorganicacidsbykidneyandlivertissue.Onlyafewsubstanceswereactiveintheseexperiments—notablycitrate,succinate,fumarate,malate,andacetate.Lateritwasfoundthatoxaloacetate
couldbemadefrompyruvateinsuchtissues,andthatitcouldbefurtheroxidizedliketheotherdicarboxylicacids.琥珀酸鹽延胡索酸鹽醋酸鹽蘋(píng)果酸鹽檸檬酸鹽草酰乙酸鹽,丁酮二酸鹽ThesesubstanceswerethepiecesintheTCApuzzlethatKrebsandotherseventuallysolved.19.1HansKrebsandtheDisco食品生物化學(xué)Chapter-19-The-Tricarboxylic-Acid-Cycle課件In1935inHungary,acrucialdiscoverywasmadebyAlbertSzent-Gy?rgyi,
whowasstudyingtheoxidationofsimilarorganicsubstratesbypigeonbreast
muscle,anactiveflightmusclewithveryhighratesofoxidationandmetabolism.
Carefullymeasuringtheamountofoxygenconsumed,heobservedthat
additionofanyofthreefour-carbondicarboxylicacids—succinate,
fumarate,ormalate—causedtheconsumptionofmuchmoreoxygenthanwasrequired
fortheoxidationoftheaddedsubstanceitself.Heconcludedthatthesesubstances
werelimitinginthecelland,whenprovided,stimulatedoxidationofendogenousglucoseandother
carbohydratesinthetissues.
Healsofoundthatmalonate丙二酸
,acompetitiveinhibitorofsuccinatedehydrogenase,inhibitedtheseoxidativeprocesses;thisfindingsuggestedthatsuccinateoxidationisacrucialstep.AlbertSzent-Gy?rgyi
hypothesizedthatthesedicarboxylicacidswerelinked
byanenzymaticpathwaythatwasimportantforaerobicmetabolism.In1935inHungary,acrucialAnotherimportantpieceofthepuzzlecamefromtheworkofCarlMartiusandFranzKnoop,whoshowedthatcitricacidcouldbeconvertedtoisocitrateandthento
-ketoglutarate.Thisfindingwassignificantbecauseitwasalreadyknownthat-ketoglutaratecouldbeenzymaticallyoxidizedtosuccinate.Atthisjuncture,thepathwayfromcitratetooxaloacetateseemedtobeasshownhere.Whereasthepathwaymadesense,thecatalyticeffectofsuccinateandtheotherdicarboxylicacidsfromSzent-Gy?rgyi’sstudiesremainedapuzzle.AnotherimportantpieceoftheIn1937Krebsfoundthatcitratecouldbeformedinmusclesuspensionsifoxaloacetateandeitherpyruvateoracetatewereadded.Hesawthathenowhadacycle,notasimplepathway,andthatadditionofanyoftheintermediatescouldgeneratealloftheothers.The
existenceofacycle,togetherwiththeentryofpyruvateintothecycleinthesynthesisofcitrate,providedaclearexplanationfortheacceleratingpropertiesofsuccinate,fumarate,andmalate.Ifalltheseintermediatesledtooxaloacetate,whichcombinedwithpyruvatefromglycolysis,theycouldstimulatetheoxidationofmanysubstancesbesidesthemselves.(Kreb’sconceptualleaptoacyclewasnothisfirst.TogetherwithmedicalstudentKurtHenseleit,hehadalreadyelucidatedthedetailsoftheureacyclein1932.)In1937KrebsfoundthatcitraThecompletetricarboxylicacid(Krebs)cycle,asitisnowunderstood,isshown.Thecompletetricarboxylicaci19.2TheTCACycle—ABriefSummaryTheentryofnewcarbonunitsintothecycleisthroughacetyl-CoA.Thisentrymetabolitecanbeformedeitherfrompyruvate(fromglycolysis)orfromoxidationoffattyacids.Transferofthetwo-carbonacetylgroupfromacetyl-CoAtothefour-carbonoxaloacetatetoyieldsix-carboncitrateiscatalyzedbycitratesynthase.Adehydration–rehydrationrearrangementofcitrateyieldsisocitrate.Twosuccessivedecarboxylationsproduce-ketoglutarateandthensuccinyl-CoA,aCoAconjugateofafour-carbonunit.Severalstepslater,oxaloacetateisregeneratedandcancombinewithanothertwo-carbonunitofacetyl-CoA.Thus,carbonentersthecycleasacetyl-CoAandexitsasCO2.Intheprocess,metabolicenergyiscapturedintheformofATP,NADH,andenzyme-boundFADH2.19.2TheTCACycle—ABriefSu19.3TheBridgingStep:OxidativeDecarboxylationofPyruvatePyruvateproducedbyglycolysisisasignificantsourceofacetyl-CoAfortheTCAcycle.Because,ineukaryoticcells,glycolysisoccursinthecytoplasm,whereastheTCAcyclereactionsandallsubsequentstepsofaerobicmetabolismtakeplaceinthemitochondria,pyruvatemustfirstenterthemitochondriatoentertheTCAcycle.19.3TheBridgingStep:OxidaThereactioniscatalyzedbypyruvatedehydrogenase,amultienzymecomplex.Thepyruvatedehydrogenasecomplex(PDC)isanoncovalentassemblyofthreedifferentenzymesoperatinginconcerttocatalyzesuccessivestepsintheconversionofpyruvatetoacetyl-CoA.Theactivesitesofallthreeenzymesarenotfarremovedfromoneanother,andtheproductofthefirstenzymeispasseddirectlytothesecondenzymeandsoon,withoutdiffusionofsubstratesandproductsthroughthesolution.Thereactioniscatalyzedbyp19.4EntryintotheCycle:TheCitrateSynthaseReaction草酰乙酸檸檬酸ThefirstreactionwithintheTCAcycle,theonebywhichcarbonatomsareintroduced,isthecitratesynthasereaction.Theoverall?G°is-31.4kJ/mol,andunderstandardconditionsthereactionisessentiallyirreversible.Althoughthemitochondrialconcentrationofoxaloacetateisverylow(muchlessthan1μM),thestrong,negative?G°drivesthereactionforward.19.4EntryintotheCycle:ThTheStructureofCitrateSynthaseCitratesynthaseinmammalsisadimerof49-kDsubunits.Oneachsubunit,oxaloacetateandacetyl-CoAbindtotheactivesite,whichliesinacleftbetweentwodomainsandissurroundedmainlyby-helicalsegments.Bindingofoxaloacetateinducesaconformationalchangethatfacilitatesthebindingofacetyl-CoAandclosestheactivesite,
sothatthereactivecarbanion負(fù)碳離子
ofacetyl-CoAisprotectedfromprotonationbywater.Inthemonomerofcitratesynthase,citrateisshowningreen,andCoAisred.InducedFitmodelTheStructureofCitrateSynthRegulationofCitrateSynthaseCitratesynthaseisthefirststepinthismetabolicpathway,andasstatedthereactionhasalargenegative?G.Asmightbeexpected,itisahighlyregulatedenzyme.NADH,aproductoftheTCAcycle,isanallostericinhibitor
ofcitratesynthase,asissuccinyl-CoA,theproductofthefollowingstepinthecycle(andanacetyl-CoAanalog).RegulationofCitrateSynthase19.5TheIsomerizationofCitratebyAconitase順烏頭酸酶Citrateitselfposesaproblem:itisapoorcandidateforfurtheroxidationbecauseitcontainsatertiaryalcohol,whichcouldbeoxidizedonlybybreakingacarbon–carbonbond.Anobvioussolutiontothisproblemistoisomerizethetertiaryalcoholtoasecondaryalcohol.Citrateisisomerizedtoisocitratebyaconitase.19.5TheIsomerizationofCit19.6IsocitrateDehydrogenase—TheFirstOxidationintheCycleInthenextstepoftheTCAcycle,isocitrateisoxidativelydecarboxylated脫羧byIsocitrateDehydrogenase異檸檬酸脫氫酶toyield-ketoglutarate酮戊二酸鹽,withconcomitantreductionofNADtoNADH.Thereactionhasanet?G°of-8.4kJ/mol,anditissufficientlyexergonictopulltheaconitasereactionforward.19.6IsocitrateDehydrogenaseIsocitrateDehydrogenaseIsocitratedehydrogenaseprovidesthefirstconnectionbetweentheTCAcycleandtheelectrontransportpathwayandoxidativephosphorylation,viaitsproductionofNADH.Asaconnectingpointbetweentwometabolicpathways,isocitratedehydrogenaseisaregulatedreaction.NADHandATPareallostericinhibitors,whereasADPactsasanallostericactivator,loweringtheKmforisocitratebyafactorof10.TheenzymeisvirtuallyinactiveintheabsenceofADP.IsocitrateDehydrogenase19.7-KetoglutarateDehydrogenase—ASecondDecarboxylationAsecondoxidativedecarboxylationoccursinthe-ketoglutaratedehydrogenasereaction.-酮戊二酸鹽乙酰琥珀酸-ketoglutaratedehydrogenaseisamultienzymecomplex—consistingof-ketoglutaratedehydrogenase,dihydrolipoyltranssuccinylase,anddihydrolipoyldehydrogenase—thatemploysfivedifferentcoenzymes.Thefreeenergychangesforthesereactionsare-29to-33.5kJ/mol.ThisreactionproducesNADHandsuccinyl-CoA.Succinyl-CoAandNADHproductsareenergy-richspeciesthatareimportantsourcesofmetabolicenergyinsubsequentcellularprocesses.19.7-KetoglutarateDehydroge19.8Succinyl-CoASynthetase—ASubstrate-LevelPhosphorylationSuccinyl-CoA乙酰琥珀酸
isitselfahigh-energyintermediateandisutilizedinthenextstepoftheTCAcycletodrivethephosphorylationofGDPtoGTP(inmammals)orADPtoATP(inplantsandbacteria).Succinyl-CoAsynthetaseprovidesanotherexampleofasubstrate-levelphosphorylation
(likePEPinChapter19),inwhichasubstrate,ratherthananelectrontransportchainorprotongradient,providestheenergyforphosphorylation.ItistheonlysuchreactionintheTCAcycle.19.8Succinyl-CoASynthetase—TheGTPproducedbymammalsinthisreactioncanexchangeitsterminalphosphorylgroupwithADPviathenucleosidediphosphatekinasereaction:TheGTPproducedbymammalsinTheFirstFiveStepsoftheTCACycleProduceNADH,CO2,GTP(ATP),andSuccinateAtwo-carbonacetylgrouphasbeenintroducedasacetyl-CoAandlinkedtooxaloacetate,草酰乙酸andtwoCO2moleculeshavebeenliberated.ThecyclehasproducedtwomoleculesofNADHandoneofGTPorATP,andhasleftamoleculeofsuccinate琥珀酸.TheTCAcyclecannowbecompletedbyconvertingsuccinatetooxaloacetate.TheFirstFiveStepsoftheTC19.9SuccinateDehydrogenase—AnOxidationInvolvingFADTheoxidationofsuccinatetofumarateiscarriedoutbysuccinatedehydrogenase.IncontrastwithalloftheotherenzymesoftheTCAcycle,whicharesolubleproteinsfoundinthemitochondrialmatrix,succinatedehydrogenaseisanintegralmembraneprotein
tightlyassociatedwiththeinnermitochondrialmembrane
andisactuallypartoftheelectrontransportchain.19.9SuccinateDehydrogenase—19.10Fumarase延胡索酸酶CatalyzesTrans-HydrationofFumarate蘋(píng)果酸鹽延胡索酸鹽Fumarateishydrated結(jié)合水inastereospecificreactionbyfumarasetogiveL-malate.Thereactioninvolvestrans-additionoftheelementsofwateracrossthedoublebond.19.10Fumarase延胡索酸酶Catalyze19.11MalateDehydrogenase脫氫酶—CompletingtheCycle草酰乙酸鹽蘋(píng)果酸鹽InthelaststepoftheTCAcycle,L-malateisoxidizedtooxaloacetatebymalatedehydrogenase.Thisreactionisveryendergonic,withaG°of+30kJ/mol.Consequently,theconcentrationofoxaloacetateinthemitochondrialmatrixisusuallyquitelow.Thereaction,however,ispulledforwardbythefavorablecitratesynthasereaction.OxidationofmalateiscoupledtoreductionofyetanothermoleculeofNAD+,thethirdoneofthecycle.19.11MalateDehydrogenase脫氫19.12ASummaryoftheCycleThenetreactionaccomplishedbytheTCAcycle,asfollows,showstwomoleculesofCO2,oneATP,andfourreducedcoenzymesproducedperacetategroup
oxidized.Thecycleisexergonic,withanet?G°foronepassaroundthecycleofapproximately-40kJ/mol.Glucosemetabolizedviaglycolysisproducestwomoleculesofpyruvateandthustwomoleculesofacetyl-CoA,whichcanentertheTCAcycle.CombiningglycolysisandtheTCAcyclegivesthenetreactionshown:19.12ASummaryoftheCycleT食品生物化學(xué)Chapter-19-The-Tricarboxylic-Acid-Cycle課件食品生物化學(xué)Chapter-19-The-Tricarboxylic-Acid-Cycle課件AllsixcarbonsofglucoseareliberatedasCO2,andatotaloffourmoleculesofATPareformedthusfarinsubstrate-levelphosphorylations.Atotalof3ATPperNADHand2ATPperFADH2maybeproducedthroughtheprocessesofelectrontransportandoxidativephosphorylation.Thusthe12reducedcoenzymesproduceduptothispointcaneventuallyproduceamaximumof34moleculesofATPintheelectrontransportandoxidativephosphorylationpathways.Together,38moleculesofATP.Butitisnotthefinalanswer.Allsixcarbonsofglucoseare19.13TheTCACycleProvidesIntermediatesforBiosyntheticPathwaysUntilnowwehaveviewedtheTCAcycleasacatabolicprocessbecauseitoxidizesacetateunitstoCO2andconvertstheliberatedenergytoATPandreducedcoenzymes.TheTCAcycleis,afterall,theendpointforbreakdownoffoodmaterials,atleastintermsofcarbonturnover.However,four-,five-,andsix-carbonspeciesproducedintheTCAcyclealsofuelavarietyofbiosyntheticprocesses.
-Ketoglutarate,succinyl-CoA,fumarate,andoxaloacetateareallprecursorsofimportantcellularspecies.Inordertoparticipateineukaryoticbiosyntheticprocesses,however,theymustfirstbetransportedoutofthemitochondria.琥珀酸鹽延胡索酸鹽醋酸鹽蘋(píng)果酸鹽檸檬酸鹽草酰乙酸鹽,丁酮二酸鹽19.13TheTCACycleProvidesTheTCAcycleprovidesintermediatesfornumerousbiosyntheticprocessesinthecell卟啉
TheTCAcycleprovidesintermeExportofcitratefrommitochondriaandcytosolicbreakdownproducesoxaloacetateandacetyl-CoA.Oxaloacetateisrecycledtomalateorpyruvate,whichre-entersthemitochondria.Thiscycleprovidesacetyl-CoAforfattyacidsynthesisinthecytosol.Exportofcitratefrommitocho19.14TheAnaplerotic補(bǔ)給,or“FillingUp,”ReactionsInasortofreciprocalarrangement,thecellalsofeedsmanyintermediatesbackintotheTCAcyclefromotherreactions.Thecatabolismofaminoacidsprovidespyruvate,acetyl-CoA,oxaloacetate,fumarate,-ketoglutarate,andsuccinate,allofwhichmaybeoxidizedbytheTCAcycle.19.14TheAnaplerotic補(bǔ)給,or“TheAnaplerotic補(bǔ)給,or“FillingUp,”ReactionsTheAnaplerotic補(bǔ)給,or“FillingPEPcarboxylaseandpyruvatecarboxylasesynthesizeoxaloacetate.Pyruvatecarboxylaseisthemostimportantanapleroticreactions.Itexistsinthemitochondriaofanimalcellsbutnotinplants,anditprovidesadirectlinkbetweenglycolysisandtheTCAcycle.Pyruvatecarboxylasehasanabsoluteallostericrequirementforacetyl-CoA.Thus,whenacetyl-CoAlevelsexceedtheoxaloacetatesupply,allostericactivationofpyruvatecarboxylasebyacetyl-CoAraisesoxaloacetatelevels,sothattheexcessacetyl-CoAcanentertheTCAcycle.PEPcarboxylaseandpyruvatec19.15RegulationoftheTCACycleSituatedasitisbetweenglycolysisandtheelectrontransportchain,theTCAcyclemustbecarefullycontrolledbythecell.Ifthecyclewerepermittedtorununchecked,largeamountsofmetabolicenergycouldbewastedinoverproductionofreducedcoenzymesandATP;conversely,ifitrantooslowly,ATPwouldnotbeproducedrapidlyenoughtosatisfytheneedsofthecell.Also,asjustseen,theTCAcycleisanimportantsourceofprecursorsforbiosyntheticprocessesandmustbeabletoprovidethemasneeded.19.15RegulationoftheTCAC食品生物化學(xué)Chapter-19-The-Tricarboxylic-Acid-Cycle課件WhatarethesitesofregulationintheTCAcycle?Baseduponourexperiencewithglycolysis,wemightanticipatethatsomeofthereactionsoftheTCAcyclewouldoperatenearequilibriumundercellularconditions(with?G≈0),whereasothers—thesitesofregulation—wouldbecharacterizedbylarge,negative?Gvalues.Threereactionsofthecycle—citratesynthase,isocitratedehydrogenase,and-ketoglutaratedehydrogenase—operatewithlarge,negative?Gvaluesundermitochondrialconditionsandarethustheprimarysitesofregulationinthecycle.Theprincipalregulatory“signals”areacetyl-CoA,ATP,NAD,andNADH.WhatarethesitesofregulatiTheTCAcycleisturnedonwheneithertheADP/ATPorNAD/NADHratioishigh,anindicationthatthecellhasrunlowonATPorNADHthusreflectingtheenergystatusofthecell.NADHinhibitsPyruvatedehydrogenase,citratesynthase,isocitratedehydrogenase,and-ketoglutaratedehydrogenaseTheTCAcycleisturnedonwheAcetyl-CoA
actsasasignaltotheTCAcyclethatglycolysisorfattyacidbreakdownisproducingtwo-carbonunits.Acetyl-CoAactivatespyruvatecarboxylase,theanapleroticreactionthatprovidesoxaloacetate,theacceptorforincreasedfluxofacetyl-CoAintotheTCAcycle.Ontheotherhand,
succinyl-CoA
isanintracycleregulator,inhibitingcitratesynthaseand-ketoglutaratedehydrogenase.Acetyl-CoAactsasasignaltoSupplementaldataSupplementaldata食品生物化學(xué)Chapter-19-The-Tricarboxylic-Acid-Cycle課件19.16TheGlyoxylateCycle乙醛酸循環(huán)(支路)ofPlantsandBacteria--organismsuseacetate醋酸鹽astheirsolecarbonsourceTCAcyclegivesoff2CO2foreverytwo-carbonacetategroupthatentersthuscannoteffectthenetsynthesisofTCAcycleintermediates.
PlantsandbacteriaemployamodificationoftheTCAcyclecalledtheglyoxylatecycle
toproducefour-carbondicarboxylicacids(andeventuallyevensugars)fromtwo-carbonacetateunits.TheglyoxylatecyclebypassesthetwooxidativedecarboxylationsoftheTCAcycle,andinsteadroutesisocitratethroughtheisocitratelyaseandmalatesynthasereactions19.16TheGlyoxylateCycle乙醛TheGlyoxylateCycleOperatesinSpecializedOrganellesTheenzymesoftheglyoxylatecycleinplantsarecontainedinglyoxysomes,乙醛酸循環(huán)體
organellesdevotedtothiscycle.Yeastandalgaecarryouttheglyoxylatecycleinthecytoplasm.TheenzymescommontoboththeTCAandglyoxylatepathwaysexistasisozymes,withspatiallyandfunctionallydistinctenzymesoperatingindependentlyinthetwocycles.TheGlyoxylateCycleHelpsPlantsGrowintheDarkTheexistenceoftheglyoxylatecycleexplainshowcertainseedsgrowunderground(orinthedark),wherephotosynthesisisimpossible.Manyseeds(peanuts,soybeans,andcastorbeans,forexample)arerichinlipids;andmostorganismsdegradethefattyacidsoflipidstoacetyl-CoA.Glyoxysomesforminseedsasgerminationbegins,andtheglyoxylatecycleusestheacetyl-CoAproducedinfattyacidoxidationtoprovidelargeamountsofoxaloacetateandotherintermediatesforcarbohydratesynthesis.OncethegrowingplantbeginsphotosynthesisandcanfixCO2toproducecarbohydrates,theglyoxysomesdisappear.TheGlyoxylateCycleOperatesChapter19
TheTricarboxylicAcidCycle[tra?,kɑ?b?k's?l?k]Chapter19
TheTricarboxylicA食品生物化學(xué)Chapter-19-The-Tricarboxylic-Acid-Cycle課件Aerobiccellsuseametabolicwheel--thetricarboxylicacidcycle
三羧酸循環(huán)
(alsocalledthecitricacidcycle
檸檬酸循環(huán),orKrebscycle)—togenerateenergybyacetyl-CoAoxidation.Aerobiccellsuseametabolic19.1HansKrebsandtheDiscoveryoftheTCACycle19.2TheTCACycle—ABriefSummary19.3TheBridgingStep:OxidativeDecarboxylationofPyruvate19.4EntryintotheCycle:TheCitrateSynthaseReaction19.5TheIsomerizationofCitratebyAconitase19.6IsocitrateDehydrogenase—TheFirstOxidationintheCycle19.7-KetoglutarateDehydrogenase—ASecondDecarboxylation19.8Succinyl-CoASynthetase—ASubstrate-LevelPhosphorylation19.9SuccinateDehydrogenase—AnOxidationInvolvingFAD19.10FumaraseCatalyzesTrans-HydrationofFumarate19.11MalateDehydrogenase—CompletingtheCycle19.12ASummaryoftheCycle19.13TheTCACycleProvidesIntermediatesforBiosyntheticPathways19.14TheAnaplerotic,or“FillingUp,”Reactions19.15RegulationoftheTCACycle19.16TheGlyoxylateCycleofPlantsandBacteriaOUTLINE19.1HansKrebsandtheDiscoTricarboxylicAcidCycleTricarboxylicAcidCyclePyruvateproducedinglycolysisisoxidizedinthetricarboxylicacid(TCA)cycle.ElectronsliberatedinthisoxidationflowthroughtheelectrontransportchainanddrivethesynthesisofATPinoxidativephosphorylation.Ineukaryoticcells,thisoverallprocessoccursinmitochondria.Pyruvateproducedinglycolysi19.1HansKrebsandtheDiscoveryoftheTCACycleIn1932Krebswasstudyingtheratesofoxidationofsmallorganicacidsbykidneyandlivertissue.Onlyafewsubstanceswereactiveintheseexperiments—notablycitrate,succinate,fumarate,malate,andacetate.Lateritwasfoundthatoxaloacetate
couldbemadefrompyruvateinsuchtissues,andthatitcouldbefurtheroxidizedliketheotherdicarboxylicacids.琥珀酸鹽延胡索酸鹽醋酸鹽蘋(píng)果酸鹽檸檬酸鹽草酰乙酸鹽,丁酮二酸鹽ThesesubstanceswerethepiecesintheTCApuzzlethatKrebsandotherseventuallysolved.19.1HansKrebsandtheDisco食品生物化學(xué)Chapter-19-The-Tricarboxylic-Acid-Cycle課件In1935inHungary,acrucialdiscoverywasmadebyAlbertSzent-Gy?rgyi,
whowasstudyingtheoxidationofsimilarorganicsubstratesbypigeonbreast
muscle,anactiveflightmusclewithveryhighratesofoxidationandmetabolism.
Carefullymeasuringtheamountofoxygenconsumed,heobservedthat
additionofanyofthreefour-carbondicarboxylicacids—succinate,
fumarate,ormalate—causedtheconsumptionofmuchmoreoxygenthanwasrequired
fortheoxidationoftheaddedsubstanceitself.Heconcludedthatthesesubstances
werelimitinginthecelland,whenprovided,stimulatedoxidationofendogenousglucoseandother
carbohydratesinthetissues.
Healsofoundthatmalonate丙二酸
,acompetitiveinhibitorofsuccinatedehydrogenase,inhibitedtheseoxidativeprocesses;thisfindingsuggestedthatsuccinateoxidationisacrucialstep.AlbertSzent-Gy?rgyi
hypothesizedthatthesedicarboxylicacidswerelinked
byanenzymaticpathwaythatwasimportantforaerobicmetabolism.In1935inHungary,acrucialAnotherimportantpieceofthepuzzlecamefromtheworkofCarlMartiusandFranzKnoop,whoshowedthatcitricacidcouldbeconvertedtoisocitrateandthento
-ketoglutarate.Thisfindingwassignificantbecauseitwasalreadyknownthat-ketoglutaratecouldbeenzymaticallyoxidizedtosuccinate.Atthisjuncture,thepathwayfromcitratetooxaloacetateseemedtobeasshownhere.Whereasthepathwaymadesense,thecatalyticeffectofsuccinateandtheotherdicarboxylicacidsfromSzent-Gy?rgyi’sstudiesremainedapuzzle.AnotherimportantpieceoftheIn1937Krebsfoundthatcitratecouldbeformedinmusclesuspensionsifoxaloacetateandeitherpyruvateoracetatewereadded.Hesawthathenowhadacycle,notasimplepathway,andthatadditionofanyoftheintermediatescouldgeneratealloftheothers.The
existenceofacycle,togetherwiththeentryofpyruvateintothecycleinthesynthesisofcitrate,providedaclearexplanationfortheacceleratingpropertiesofsuccinate,fumarate,andmalate.Ifalltheseintermediatesledtooxaloacetate,whichcombinedwithpyruvatefromglycolysis,theycouldstimulatetheoxidationofmanysubstancesbesidesthemselves.(Kreb’sconceptualleaptoacyclewasnothisfirst.TogetherwithmedicalstudentKurtHenseleit,hehadalreadyelucidatedthedetailsoftheureacyclein1932.)In1937KrebsfoundthatcitraThecompletetricarboxylicacid(Krebs)cycle,asitisnowunderstood,isshown.Thecompletetricarboxylicaci19.2TheTCACycle—ABriefSummaryTheentryofnewcarbonunitsintothecycleisthroughacetyl-CoA.Thisentrymetabolitecanbeformedeitherfrompyruvate(fromglycolysis)orfromoxidationoffattyacids.Transferofthetwo-carbonacetylgroupfromacetyl-CoAtothefour-carbonoxaloacetatetoyieldsix-carboncitrateiscatalyzedbycitratesynthase.Adehydration–rehydrationrearrangementofcitrateyieldsisocitrate.Twosuccessivedecarboxylationsproduce-ketoglutarateandthensuccinyl-CoA,aCoAconjugateofafour-carbonunit.Severalstepslater,oxaloacetateisregeneratedandcancombinewithanothertwo-carbonunitofacetyl-CoA.Thus,carbonentersthecycleasacetyl-CoAandexitsasCO2.Intheprocess,metabolicenergyiscapturedintheformofATP,NADH,andenzyme-boundFADH2.19.2TheTCACycle—ABriefSu19.3TheBridgingStep:OxidativeDecarboxylationofPyruvatePyruvateproducedbyglycolysisisasignificantsourceofacetyl-CoAfortheTCAcycle.Because,ineukaryoticcells,glycolysisoccursinthecytoplasm,whereastheTCAcyclereactionsandallsubsequentstepsofaerobicmetabolismtakeplaceinthemitochondria,pyruvatemustfirstenterthemitochondriatoentertheTCAcycle.19.3TheBridgingStep:OxidaThereactioniscatalyzedbypyruvatedehydrogenase,amultienzymecomplex.Thepyruvatedehydrogenasecomplex(PDC)isanoncovalentassemblyofthreedifferentenzymesoperatinginconcerttocatalyzesuccessivestepsintheconversionofpyruvatetoacetyl-CoA.Theactivesitesofallthreeenzymesarenotfarremovedfromoneanother,andtheproductofthefirstenzymeispasseddirectlytothesecondenzymeandsoon,withoutdiffusionofsubstratesandproductsthroughthesolution.Thereactioniscatalyzedbyp19.4EntryintotheCycle:TheCitrateSynthaseReaction草酰乙酸檸檬酸ThefirstreactionwithintheTCAcycle,theonebywhichcarbonatomsareintroduced,ist
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 教師教學(xué)語(yǔ)言對(duì)學(xué)生學(xué)習(xí)效果的影響分析
- 教育中的多媒體教學(xué)資源開(kāi)發(fā)與應(yīng)用
- 嘉興南洋職業(yè)技術(shù)學(xué)院《國(guó)際貿(mào)易沙盤(pán)》2023-2024學(xué)年第一學(xué)期期末試卷
- 快節(jié)奏生活中的健康飲食選擇
- 長(zhǎng)治學(xué)院《數(shù)字化人力資源管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 長(zhǎng)江藝術(shù)工程職業(yè)學(xué)院《英國(guó)社會(huì)生態(tài)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 山西華澳商貿(mào)職業(yè)學(xué)院《國(guó)家公園與濕地生態(tài)管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東石油化工學(xué)院《免疫學(xué)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 牡丹江師范學(xué)院《運(yùn)動(dòng)損傷與康復(fù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 大連楓葉職業(yè)技術(shù)學(xué)院《版畫(huà)造型基礎(chǔ)Ⅰ》2023-2024學(xué)年第一學(xué)期期末試卷
- 高水平研究型大學(xué)建設(shè)中教育、科技與人才的協(xié)同發(fā)展研究
- 山西省2025年普通高中學(xué)業(yè)水平合格性考試適應(yīng)性測(cè)試化學(xué)試卷(含答案)
- 江西省九江市外國(guó)語(yǔ)學(xué)校2025屆英語(yǔ)八下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含答案
- 2025攝影服務(wù)合同模板
- 2025年全國(guó)統(tǒng)一高考語(yǔ)文試卷(全國(guó)一卷)含答案
- 2025年福建省高中自主招生模擬數(shù)學(xué)試卷試題(含答案)
- 2025年中考一模卷(貴州)英語(yǔ)試題含答案解析
- 餐飲運(yùn)營(yíng)餐飲管理流程考核試題及答案在2025年
- T/ISEAA 006-2024大模型系統(tǒng)安全測(cè)評(píng)要求
- 2025龍巖市上杭縣藍(lán)溪鎮(zhèn)社區(qū)工作者考試真題
- 少隊(duì)工作計(jì)劃的風(fēng)險(xiǎn)控制措施
評(píng)論
0/150
提交評(píng)論