



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023屆泉州市泉港三川中學中考沖刺卷數學測試卷注意事項1.考生要認真填寫考場號和座位序號。2.測試卷所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.“a是實數,”這一事件是()A.不可能事件 B.不確定事件 C.隨機事件 D.必然事件2.若點A(a,b),B(,c)都在反比例函數y=的圖象上,且﹣1<c<0,則一次函數y=(b﹣c)x+ac的大致圖象是()A. B.C. D.3.如圖,AB∥CD,∠1=45°,∠3=80°,則∠2的度數為()A.30° B.35° C.40° D.45°4.圓錐的底面直徑是80cm,母線長90cm,則它的側面積是A. B. C. D.5.已知點A(1﹣2x,x﹣1)在第二象限,則x的取值范圍在數軸上表示正確的是()A. B.C. D.6.cos60°的值等于()A.1 B. C. D.7.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數學興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m8.若,則括號內的數是A. B. C.2 D.89.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數是①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.410.已知一次函數y=﹣2x+3,當0≤x≤5時,函數y的最大值是()A.0B.3C.﹣3D.﹣7二、填空題(共7小題,每小題3分,滿分21分)11.有一張三角形紙片ABC,∠A=80°,點D是AC邊上一點,沿BD方向剪開三角形紙片后,發現所得兩張紙片均為等腰三角形,則∠C的度數可以是__________.12.如圖,⊙O的半徑為2,AB為⊙O的直徑,P為AB延長線上一點,過點P作⊙O的切線,切點為C.若PC=2,則BC的長為______.13.若2x+y=2,則4x+1+2y的值是_______.14.如圖,四邊形ABCD是菱形,∠BAD=60°,AB=6,對角線AC與BD相交于點O,點E在AC上,若OE=2,則CE的長為_______15.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,則2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,計算出1+3+32+33+…+32018的值為_____.16.如圖,二次函數y=a(x﹣2)2+k(a>0)的圖象過原點,與x軸正半軸交于點A,矩形OABC的頂點C的坐標為(0,﹣2),點P為x軸上任意一點,連結PB、PC.則△PBC的面積為_____.17.已知點P(2,3)在一次函數y=2x-m的圖象上,則m=_______.三、解答題(共7小題,滿分69分)18.(10分)某養雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據它們的質量(單位:),繪制出如下的統計圖①和圖②.請根據相關信息,解答下列問題:(Ⅰ)圖①中的值為;(Ⅱ)求統計的這組數據的平均數、眾數和中位數;(Ⅲ)根據樣本數據,估計這2500只雞中,質量為的約有多少只?19.(5分)如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標;(3)在圖乙中,點C和點C1關于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標.20.(8分)小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進行兩局游戲便能確定贏家的概率.21.(10分)如圖,在航線l的兩側分別有觀測點A和B,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km.現有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點A的正北方向的D處.(1)求觀測點B到航線的距離;(2)求該輪船航行的速度(結果精確到0.1km/h).(參考數據:≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)22.(10分)已知2是關于x的方程x2﹣2mx+3m=0的一個根,且這個方程的兩個根恰好是等腰△ABC的兩條邊長,則△ABC的周長為_____.23.(12分)如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數字2,3、1.(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數字是奇數的概率為;(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數字,求這兩個數字之和是3的倍數的概率(用畫樹狀圖或列表等方法求解).24.(14分)當x取哪些整數值時,不等式與4﹣7x<﹣3都成立?
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【答案解析】是實數,||一定大于等于0,是必然事件,故選D.2、D【答案解析】
將,代入,得,,然后分析與的正負,即可得到的大致圖象.【題目詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號.∴.又∵,故選D.【答案點睛】本題考查了反比例函數圖像上點的坐標特征,一次函數的圖像與性質,得出與的正負是解答本題的關鍵.3、B【答案解析】分析:根據平行線的性質和三角形的外角性質解答即可.詳解:如圖,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故選B.點睛:此題考查平行線的性質,關鍵是根據平行線的性質和三角形的外角性質解答.4、D【答案解析】圓錐的側面積=×80π×90=3600π(cm2).故選D.5、B【答案解析】
先分別求出每一個不等式的解集,再根據口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【題目詳解】解:根據題意,得:,解不等式①,得:x>,解不等式②,得:x>1,∴不等式組的解集為x>1,故選:B.【答案點睛】本題主要考查解一元一次不等式組,關鍵要掌握解一元一次不等式的方法,牢記確定不等式組解集方法.6、A【答案解析】
根據特殊角的三角函數值直接得出結果.【題目詳解】解:cos60°=故選A.【答案點睛】識記特殊角的三角函數值是解題的關鍵.7、C【答案解析】
如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB=MN=CM﹣CN,即可得到結論.【題目詳解】如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.【答案點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數學模型,把實際問題轉化為數學問題.8、C【答案解析】
根據有理數的減法,減去一個數等于加上這個數的相反數,可得答案.【題目詳解】解:,
故選:C.【答案點睛】本題考查了有理數的減法,減去一個數等于加上這個數的相反數.9、D【答案解析】
①根據作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結論是:①②③④,,共有4個.故選D.10、B【答案解析】【分析】由于一次函數y=-2x+3中k=-2<0由此可以確定y隨x的變化而變化的情況,即確定函數的增減性,然后利用解析式即可求出自變量在0≤x≤5范圍內函數值的最大值.【題目詳解】∵一次函數y=﹣2x+3中k=﹣2<0,∴y隨x的增大而減小,∴在0≤x≤5范圍內,x=0時,函數值最大﹣2×0+3=3,故選B.【答案點睛】本題考查了一次函數y=kx+b的圖象的性質:①k>0,y隨x的增大而增大;②k<0,y隨x的增大而減小.二、填空題(共7小題,每小題3分,滿分21分)11、25°或40°或10°【答案解析】【分析】分AB=AD或AB=BD或AD=BD三種情況根據等腰三角形的性質求出∠ADB,再求出∠BDC,然后根據等腰三角形兩底角相等列式計算即可得解.【題目詳解】由題意知△ABD與△DBC均為等腰三角形,對于△ABD可能有①AB=BD,此時∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=(180°-100°)=40°,②AB=AD,此時∠ADB=(180°-∠A)=(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=(180°-130°)=25°,③AD=BD,此時,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=(180°-160°)=10°,綜上所述,∠C度數可以為25°或40°或10°故答案為25°或40°或10°【答案點睛】本題考查了等腰三角形的性質,難點在于分情況討論.12、2【答案解析】
連接OC,根據勾股定理計算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,則∠COP=60°,可得△OCB是等邊三角形,從而得結論.【題目詳解】連接OC,∵PC是⊙O的切線,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等邊三角形,∴BC=OB=2,故答案為2【答案點睛】本題考查切線的性質、等腰三角形的性質、等邊三角形的判定等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.13、1【答案解析】分析:將原式化簡成2(2x+y)+1,然后利用整體代入的思想進行求解得出答案.詳解:原式=2(2x+y)+1=2×2+1=1.點睛:本題主要考查的是整體思想求解,屬于基礎題型.找到整體是解題的關鍵.14、5或【答案解析】分析:由菱形的性質證出△ABD是等邊三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.詳解:∵四邊形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等邊三角形,∴BD=AB=6,∴∴∴∵點E在AC上,∴當E在點O左邊時當點E在點O右邊時∴或;故答案為或.點睛:考查菱形的性質,注意分類討論思想在數學中的應用,不要漏解.15、【答案解析】
仿照已知方法求出所求即可.【題目詳解】令S=1+3+32+33+…+32018,則3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案為:.【答案點睛】本題考查了有理數的混合運算,熟練掌握運算法則是解答本題的關鍵.16、4【答案解析】
根據二次函數的對稱性求出點A的坐標,從而得出BC的長度,根據點C的坐標得出三角形的高線,從而得出答案.【題目詳解】∵二次函數的對稱軸為直線x=2,∴點A的坐標為(4,0),∵點C的坐標為(0,-2),∴點B的坐標為(4,-2),∴BC=4,則.【答案點睛】本題主要考查的是二次函數的對稱性,屬于基礎題型.理解二次函數的軸對稱性是解決這個問題的關鍵.17、1【答案解析】
根據待定系數法求得一次函數的解析式,解答即可.【題目詳解】解:∵一次函數y=2x-m的圖象經過點P(2,3),∴3=4-m,解得m=1,故答案為:1.【答案點睛】此題主要考查了一次函數圖象上點的坐標特征,關鍵是根據待定系數法求得一次函數的解析式.三、解答題(共7小題,滿分69分)18、(Ⅰ)28.(Ⅱ)平均數是1.52.眾數為1.8.中位數為1.5.(Ⅲ)200只.【答案解析】分析:(Ⅰ)用整體1減去所有已知的百分比即可求出m的值;(Ⅱ)根據眾數、中位數、加權平均數的定義計算即可;(Ⅲ)用總數乘以樣本中2.0kg的雞所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)觀察條形統計圖,∵,∴這組數據的平均數是1.52.∵在這組數據中,1.8出現了16次,出現的次數最多,∴這組數據的眾數為1.8.∵將這組數據按從小到大的順序排列,其中處于中間的兩個數都是1.5,有,∴這組數據的中位數為1.5.(Ⅲ)∵在所抽取的樣本中,質量為的數量占.∴由樣本數據,估計這2500只雞中,質量為的數量約占.有.∴這2500只雞中,質量為的約有200只.點睛:此題主要考查了平均數、眾數、中位數的統計意義以及利用樣本估計總體等知識.找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個;平均數是指在一組數據中所有數據之和再除以數據的個數.19、(1)y=12x2-x-4(2)點M的坐標為(2,-4)(3)-83【答案解析】【分析】(1)設交點式y=a(x+2)(x-4),然后把C點坐標代入求出a即可得到拋物線解析式;
(2)連接OM,設點M的坐標為m,12m2-m-4.由題意知,當四邊形OAMC面積最大時,陰影部分的面積最小.S四邊形OAMC=S△OAM(3)拋物線的對稱軸為直線x=1,點C與點C1關于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;設點Pn,12n2-n-4,過P作PQ垂直于x軸,垂足為Q.證△PAQ∽△C1AD,得PQC1【題目詳解】(1)拋物線的解析式為y=12(x-4)(x+2)=12x(2)連接OM,設點M的坐標為m,1由題意知,當四邊形OAMC面積最大時,陰影部分的面積最小.S四邊形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.當m=2時,四邊形OAMC面積最大,此時陰影部分面積最小,所以點M的坐標為(2,-4).(3)∵拋物線的對稱軸為直線x=1,點C與點C1關于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,設點Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴點P的橫坐標為-83或-4【答案點睛】本題考核知識點:二次函數綜合運用.解題關鍵點:熟記二次函數的性質,數形結合,由所求分析出必知條件.20、(1),(2)【答案解析】解:(1)畫樹狀圖得:∵總共有9種等可能情況,每人獲勝的情形都是3種,∴兩人獲勝的概率都是.(2)由(1)可知,一局游戲每人勝、負、和的機會均等,都為.任選其中一人的情形可畫樹狀圖得:∵總共有9種等可能情況,當出現(勝,勝)或(負,負)這兩種情形時,贏家產生,∴兩局游戲能確定贏家的概率為:.(1)根據題意畫出樹狀圖或列表,由圖表求得所有等可能的結果與在一局游戲中兩人獲勝的情況,利用概率公式即可求得答案.(2)因為由(1)可知,一局游戲每人勝、負、和的機會均等,都為.可畫樹狀圖,由樹狀圖求得所有等可能的結果與進行兩局游戲便能確定贏家的情況,然后利用概率公式求解即可求得答案.21、(1)觀測點到航線的距離為3km(2)該輪船航行的速度約為40.6km/h【答案解析】測試卷分析:(1)設AB與l交于點O,利用∠DAO=60°,利用∠DAO的余弦求出OA長,從而求得OB長,繼而求得BE長即可;(2)先計算出DE=EF+DF=求出DE=5,再由進而由tan∠CBE=求出EC,即可求出CD的長,進而求出航行速度.測試卷解析:(1)設AB與l交于點O,在Rt△AOD中,∵∠OAD=60°,AD=2(km),∴OA==4(km),∵AB=10(km),∴OB=AB﹣OA=6(km),在Rt△BOE中,∠OBE=∠OAD=60°,∴BE=OB?cos60°=3(km),答:觀測點B到航線l的距離為3km;(2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=2,∵∠BEO=90°,BO=6,BE=3,∴OE==3,∴DE=OD+OE=5(km);CE=BE?tan∠CBE=3tan76°,∴CD=CE﹣DE=3tan76°﹣5≈3.38(k
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行會計年度工作總結
- 共享出行信用體系標準化建設與監管政策研究報告
- 基于AI的2025年城市污水處理廠智能化改造預測分析報告
- 高鐵建設2025年對區域文化創意產業發展帶動效應研究報告
- 金融行業CRM客戶服務2025年創新模式提升客戶滿意度報告
- 能源與資源行業能源行業數字化轉型實踐與探索報告
- 貨代公司實習報告總結模版
- 工業互聯網平臺同態加密技術發展趨勢與競爭格局分析報告
- 福建省泉州市晉江市重點中學2024屆中考沖刺卷數學試題含解析
- 2025年小學第二學期四級語文教研組總結模版
- 對接焊縫角焊縫的構造和計算
- 滯期費速遣費的計算
- 省級特色專業安徽省高等學校質量工程項目進展報告
- 【教案】2023屆高考英語復習:閱讀理解之詞義猜測教學設計
- 青海風電場工程地質勘察報告
- 中學田徑基礎校本課程教材
- 先導化合物的優化和結構修飾藥物化學專家講座
- 牛津英語3BM3U3Seasons的資料
- EIM Book 1 Unit 11 Promises,promises單元檢測試題
- 云南省地圖含市縣地圖矢量分層地圖行政區劃市縣概況ppt模板
- 資源昆蟲學-傳粉昆蟲
評論
0/150
提交評論