




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π2.下表是某校合唱團成員的年齡分布,對于不同的x,下列關于年齡的統計量不會發生改變的是()年齡/歲13141516頻數515x10-xA.平均數、中位數 B.眾數、方差 C.平均數、方差 D.眾數、中位數3.如圖,平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(3,0),B(0,6)分別在x軸,y軸上,反比例函數y=的圖象經過點D,則k值為()A.﹣14 B.14 C.7 D.﹣74.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質,對人體健康和大氣環境質量有很大危害.2.5μm用科學記數法可表示為()A. B. C. D.5.如圖,O為坐標原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數yA.10B.9C.8D.66.如圖在△ABC中,AC=BC,過點C作CD⊥AB,垂足為點D,過D作DE∥BC交AC于點E,若BD=6,AE=5,則sin∠EDC的值為()A. B. C. D.7.如圖是棋盤的一部分,建立適當的平面直角坐標系,已知棋子“車”的坐標為(-2,1),棋子“馬”的坐標為(3,-1),則棋子“炮”的坐標為()A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正確的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤9.用半徑為8的半圓圍成一個圓錐的側面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.810.一個不透明的袋中有四張完全相同的卡片,把它們分別標上數字1、2、3、1.隨機抽取一張卡片,然后放回,再隨機抽取一張卡片,則兩次抽取的卡片上數字之積為偶數的概率是()A. B. C. D.11.如圖,在平面直角坐標系xOy中,菱形AOBC的一個頂點O在坐標原點,一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數y=在第一象限內的圖象經過點A,與BC交于點F,則△AOF的面積等于()A.30 B.40 C.60 D.8012.已知a,b為兩個連續的整數,且a<<b,則a+b的值為()A.7 B.8 C.9 D.10二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,為了解全校300名男生的身高情況,隨機抽取若干男生進行身高測量,將所得數據(精確到1cm)整理畫出頻數分布直方圖(每組數據含最低值,不含最高值),估計該校男生的身高在170cm﹣175cm之間的人數約有_____人.14.如圖,已知矩形ABCD中,點E是BC邊上的點,BE=2,EC=1,AE=BC,DF⊥AE,垂足為F.則下列結論:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正確的結論是_____.(把正確結論的序號都填上)15.袋中裝有一個紅球和二個黃球,它們除了顏色外都相同,隨機從中摸出一球,記錄下顏色后放回袋中,充分搖勻后,再隨機摸出一球,兩次都摸到紅球的概率是_____.16.化簡代數式(x+1+)÷,正確的結果為_____.17.關于x的一元二次方程有兩個不相等的實數根,則k的取值范圍是▲.18.如圖,將周長為8的△ABC沿BC方向向右平移1個單位得到△DEF,則四邊形ABFD的周長為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數字2,3、1.(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數字是奇數的概率為;(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數字,求這兩個數字之和是3的倍數的概率(用畫樹狀圖或列表等方法求解).20.(6分)為了弘揚學生愛國主義精神,充分展現新時期青少年良好的思想道德素質和精神風貌,豐富學生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經典詩文誦讀比賽.九(1)班通過內部初選,選出了麗麗和張強兩位同學,但學校規定每班只有1個名額,經過老師與同學們商量,用所學的概率知識設計摸球游戲決定誰去,設計的游戲規則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復以上動作,直到分出勝負為止.根據以上規則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.21.(6分)(1)計算:(2)化簡:22.(8分)第二十四屆冬季奧林匹克運動會將于2022年2月4日至2月20日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會又舉辦過冬奧會的城市.某區舉辦了一次冬奧知識網上答題競賽,甲、乙兩校各有名學生參加活動,為了解這兩所學校的成績情況,進行了抽樣調查,過程如下,請補充完整.[收集數據]從甲、乙兩校各隨機抽取名學生,在這次競賽中他們的成績如下:甲:乙:[整理、描述數據]按如下分數段整理、描述這兩組樣本數據:學校人數成績甲乙(說明:優秀成績為,良好成績為合格成績為.)[分析數據]兩組樣本數據的平均分、中位數、眾數如下表所示:學校平均分中位數眾數甲乙其中.[得出結論](1)小明同學說:“這次競賽我得了分,在我們學校排名屬中游略偏上!”由表中數據可知小明是_校的學生;(填“甲”或“乙”)(2)張老師從乙校隨機抽取--名學生的競賽成績,試估計這名學生的競賽成績為優秀的概率為_;(3)根據以上數據推斷一所你認為競賽成績較好的學校,并說明理由:;(至少從兩個不同的角度說明推斷的合理性)23.(8分)如圖1,在平面直角坐標系中,一次函數y=﹣1x+8的圖象與x軸,y軸分別交于點A,點C,過點A作AB⊥x軸,垂足為點A,過點C作CB⊥y軸,垂足為點C,兩條垂線相交于點B.(1)線段AB,BC,AC的長分別為AB=,BC=,AC=;(1)折疊圖1中的△ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DE交AB于點D,交AC于點E,連接CD,如圖1.請從下列A、B兩題中任選一題作答,我選擇題.A:①求線段AD的長;②在y軸上,是否存在點P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.B:①求線段DE的長;②在坐標平面內,是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.24.(10分)某高校學生會在某天午餐后,隨機調查了部分同學就餐飯菜的剩余情況,并將結果統計后繪制成了如圖所示的不完整的統計圖.(1)這次被調查的同學共有名;(2)補全條形統計圖;(3)計算在扇形統計圖中剩大量飯菜所對應扇形圓心角的度數;(4)校學生會通過數據分析,估計這次被調查的所有學生一餐浪費的食物可以供200人用一餐.據此估算,該校20000名學生一餐浪費的食物可供多少人食用一餐?25.(10分)“垃圾不落地,城市更美麗”.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生“是否隨手丟垃圾”這一情況進行了問卷調查,統計結果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經常隨手丟垃圾三項.要求每位被調查的學生必須從以上三項中選一項且只能選一項.現將調查結果繪制成以下來不辜負不完整的統計圖.請你根據以上信息,解答下列問題:(1)補全上面的條形統計圖和扇形統計圖;(2)所抽取學生“是否隨手丟垃圾”情況的眾數是;(3)若該校七年級共有1500名學生,請你估計該年級學生中“經常隨手丟垃圾”的學生約有多少人?談談你的看法?26.(12分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.(1)求證:EF是⊙O的切線.(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.27.(12分)已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發到乙地,A騎摩托車,B騎電動車,圖中DE,OC分別表示A,B離開甲地的路程s(km)與時間t(h)的函數關系的圖象,根據圖象解答下列問題:(1)請用t分別表示A、B的路程sA、sB;(2)在A出發后幾小時,兩人相距15km?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
利用切線的性質得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據弧長公式計算劣弧的長.【詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.也考查了圓周角定理和弧長公式.2、D【解析】
由表易得x+(10-x)=10,所以總人數不變,14歲的人最多,眾數不變,中位數也可以確定.【詳解】∵年齡為15歲和16歲的同學人數之和為:x+(10-x)=10,∴由表中數據可知人數最多的是年齡為14歲的,共有15人,合唱團總人數為30人,∴合唱團成員的年齡的中位數是14,眾數也是14,這兩個統計量不會隨著x的變化而變化.故選D.3、B【解析】過點D作DF⊥x軸于點F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點D的坐標為:(7,2),∴k,故選B.4、C【解析】試題分析:大于0而小于1的數用科學計數法表示,10的指數是負整數,其絕對值等于第一個不是0的數字前所有0的個數.考點:用科學計數法計數5、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標,結合反比例函數圖象上點的坐標特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標為(35a,4∵點A在反比例函數y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標為(10+35b,4∵點F在反比例函數y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質、解直角三角形以及反比例函數圖象上點的坐標特征,解題的關鍵是找出S△AOF=12S菱形OBCA6、A【解析】
由等腰三角形三線合一的性質得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根據正弦函數的概念求解可得.【詳解】∵△ABC中,AC=BC,過點C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=,故選:A.【點睛】本題主要考查解直角三角形,解題的關鍵是熟練掌握等腰三角形三線合一的性質和平行線的性質及直角三角形的性質等知識點.7、B【解析】
直接利用已知點坐標建立平面直角坐標系進而得出答案.【詳解】解:根據棋子“車”的坐標為(-2,1),建立如下平面直角坐標系:∴棋子“炮”的坐標為(2,1),故答案為:B.【點睛】本題考查了坐標確定位置,正確建立平面直角坐標系是解題的關鍵.8、D【解析】
根據實數的運算法則即可一一判斷求解.【詳解】①有理數的0次冪,當a=0時,a0=0;②為同底數冪相乘,底數不變,指數相加,正確;③中2–2=,原式錯誤;④為有理數的混合運算,正確;⑤為合并同類項,正確.故選D.9、A【解析】
由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【點睛】此題主要考查了圓錐側面展開扇形與底面圓之間的關系,圓錐的側面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關鍵是應用半圓的弧長=圓錐的底面周長.10、C【解析】【分析】畫樹狀圖展示所有16種等可能的結果數,再找出兩次抽取的卡片上數字之積為偶數的結果數,然后根據概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結果數,其中兩次抽取的卡片上數字之積為偶數的結果數為12,所以兩次抽取的卡片上數字之積為偶數的概率=,故選C.【點睛】本題考查了列表法與樹狀圖法求概率,用到的知識點為:概率=所求情況數與總情況數之比.11、B【解析】
過點A作AM⊥x軸于點M,設OA=a,通過解直角三角形找出點A的坐標,結合反比例函數圖象上點的坐標特征即可求出a的值,再根據四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結合菱形的面積公式即可得出結論.【詳解】過點A作AM⊥x軸于點M,如圖所示.設OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點A的坐標為(a,a).∵點A在反比例函數y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點睛】本題考查了菱形的性質、解直角三角形以及反比例函數圖象上點的坐標特征,解題的關鍵是找出S△AOF=S菱形OBCA.12、A【解析】∵9<11<16,∴,即,∵a,b為兩個連續的整數,且,∴a=3,b=4,∴a+b=7,故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
用總人數300乘以樣本中身高在170cm-175cm之間的人數占被調查人數的比例.【詳解】估計該校男生的身高在170cm-175cm之間的人數約為300×=1(人),故答案為1.【點睛】本題考查讀頻數分布直方圖的能力和利用統計圖獲取信息的能力;利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題.14、①②【解析】
只要證明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解決問題.【詳解】∵四邊形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∵BE=2,EC=1,∴AE=AD=BC=3,AB==,∵AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△EAB≌△ADF,∴AF=BE=2,DF=AB=,故①②正確,不妨設DF平分∠ADC,則△ADF是等腰直角三角形,這個顯然不可能,故③錯誤,∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠DAF=∠CDF,∴∠CDF=∠AEB,∴sin∠CDF=sin∠AEB=,故④錯誤,故答案為①②.【點睛】本題考查矩形的性質、全等三角形的判定和性質、解直角三角形、勾股定理、銳角三角函數等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.15、【解析】
首先根據題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與兩次都摸到紅球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結果,其中兩次都摸到紅球的有1種結果,所以兩次都摸到紅球的概率是,故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.16、2x【解析】
根據分式的運算法則計算即可求解.【詳解】(x+1+)÷===2x.故答案為2x.【點睛】本題考查了分式的混合運算,熟知分式的混合運算順序及運算法則是解答本題的關鍵.17、k<且k≠1.【解析】根據一元二次方程kx2-x+1=1有兩個不相等的實數根,知△=b2-4ac>1,然后據此列出關于k的方程,解方程,結合一元二次方程的定義即可求解:∵有兩個不相等的實數根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.18、1.【解析】試題解析:根據題意,將周長為8的△ABC沿邊BC向右平移1個單位得到△DEF,則AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.考點:平移的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)這兩個數字之和是3的倍數的概率為.【解析】
(1)在標有數字1、2、3的3個轉盤中,奇數的有1、3這2個,根據概率公式可得;(2)用列表法列出所有情況,再計算概率.【詳解】解:(1)∵在標有數字1、2、3的3個轉盤中,奇數的有1、3這2個,∴指針所指扇形中的數字是奇數的概率為,故答案為;(2)列表如下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情況數為9種,其中這兩個數字之和是3的倍數的有3種,所以這兩個數字之和是3的倍數的概率為=.【點睛】本題考核知識點:求概率.解題關鍵點:列出所有情況,熟記概率公式.20、(1);(2)不公平,理由見解析.【解析】
(1)畫樹狀圖列出所有等可能結果數,找到摸出一個黃球和一個白球的結果數,根據概率公式可得答案;(2)結合(1)種樹狀圖根據概率公式計算出兩人獲勝的概率,比較大小即可判斷.【詳解】(1)畫樹狀圖如下:由樹狀圖可知共有20種等可能結果,其中一次性摸出一個黃球和一個白球的有11種結果,∴一次性摸出一個黃球和一個白球的概率為;(2)不公平,由(1)種樹狀圖可知,麗麗去的概率為,張強去的概率為=,∵,∴該游戲不公平.【點睛】本題考查了列表法與樹狀圖法,解題的關鍵是根據題意畫出樹狀圖.21、(1);(2)-1;【解析】
(1)根據負整數指數冪、特殊角的三角函數、零指數冪可以解答本題;(2)根據分式的除法和減法可以解答本題.【詳解】(1)==2-.(2)=====-1【點睛】本題考查分式的混合運算、負整數指數冪、特殊角的三角函數、零指數冪,解答本題的關鍵是明確它們各自的計算方法.22、80;(1)甲;(2);(3)乙學校競賽成績較好,理由見解析【解析】
首先根據乙校的成績結合眾數的定義即可得出a的值;(1)根據兩個學校成績的中位數進一步判斷即可;(2)根據概率的定義,結合乙校優秀成績的概率進一步求解即可;(3)根據題意,從平均數以及中位數兩方面加以比較分析即可.【詳解】由乙校成績可知,其中80出現的次數最多,故80為該組數據的眾數,∴a=80,故答案為:80;(1)由表格可知,甲校成績的中位數為60,乙校成績的中位數為75,∵小明這次競賽得了分,在他們學校排名屬中游略偏上,∴小明為甲校學生,故答案為:甲;(2)乙校隨便抽取一名學生的成績,該學生成績為優秀的概率為:,故答案為:;(3)乙校競賽成績較好,理由如下:因為乙校的平均分高于甲校的平均分說明平均水平高,乙校的中位數75高于甲校的中位數65,說明乙校分數不低于70分的學生比甲校多,綜上所述,乙校競賽成績較好.【點睛】本題主要考查了眾數、中位數、平均數的定義與簡單概率的計算的綜合運用,熟練掌握相關概念是解題關鍵.23、(1)2,3,3;(1)①AD=5;②P(0,1)或(0,2).【解析】
(1)先確定出OA=3,OC=2,進而得出AB=2,BC=3,利用勾股定理即可得出AC;(1)A.①利用折疊的性質得出BD=2﹣AD,最后用勾股定理即可得出結論;②分三種情況利用方程的思想即可得出結論;B.①利用折疊的性質得出AE,利用勾股定理即可得出結論;②先判斷出∠APC=90°,再分情況討論計算即可.【詳解】解:(1)∵一次函數y=﹣1x+2的圖象與x軸,y軸分別交于點A,點C,∴A(3,0),C(0,2),∴OA=3,OC=2.∵AB⊥x軸,CB⊥y軸,∠AOC=90°,∴四邊形OABC是矩形,∴AB=OC=2,BC=OA=3.在Rt△ABC中,根據勾股定理得,AC==3.故答案為2,3,3;(1)選A.①由(1)知,BC=3,AB=2,由折疊知,CD=AD.在Rt△BCD中,BD=AB﹣AD=2﹣AD,根據勾股定理得,CD1=BC1+BD1,即:AD1=16+(2﹣AD)1,∴AD=5;②由①知,D(3,5),設P(0,y).∵A(3,0),∴AP1=16+y1,DP1=16+(y﹣5)1.∵△APD為等腰三角形,∴分三種情況討論:Ⅰ、AP=AD,∴16+y1=15,∴y=±3,∴P(0,3)或(0,﹣3);Ⅱ、AP=DP,∴16+y1=16+(y﹣5)1,∴y=,∴P(0,);Ⅲ、AD=DP,15=16+(y﹣5)1,∴y=1或2,∴P(0,1)或(0,2).綜上所述:P(0,3)或(0,﹣3)或P(0,)或P(0,1)或(0,2).選B.①由A①知,AD=5,由折疊知,AE=AC=1,DE⊥AC于E.在Rt△ADE中,DE==;②∵以點A,P,C為頂點的三角形與△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°.∵四邊形OABC是矩形,∴△ACO≌△CAB,此時,符合條件,點P和點O重合,即:P(0,0);如圖3,過點O作ON⊥AC于N,易證,△AON∽△ACO,∴,∴,∴AN=,過點N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(),而點P1與點O關于AC對稱,∴P1(),同理:點B關于AC的對稱點P1,同上的方法得,P1(﹣).綜上所述:滿足條件的點P的坐標為:(0,0),(),(﹣).【點睛】本題是一次函數綜合題,主要考查了矩形的性質和判定,相似三角形的判定和性質,勾股定理,折疊的性質,對稱的性質,解(1)的關鍵是求出AC,解(1)的關鍵是利用分類討論的思想解決問題.24、(1)1000(2)200(3)54°(4)4000人【解析】試題分析:(1)根據沒有剩飯的人數是400人,所占的百分比是40%,據此即可求得調查的總人數;(2)利用(1)中求得結果減去其它組的人數即可求得剩少量飯的人數,從而補全直方圖;(3)利用360°乘以對應的比例即可求解;(4)利用20000除以調查的總人數,然后乘以200即可求解.試題解析:(1)被調查的同學的人數是400÷40%=1000(名);(2)剩少量的人數是1000-400-250-150=200(名),;(3)在扇形統計圖中剩大量飯菜所對應扇形圓心角的度數是:360°×1501000(4)200001000答:校20000名學生一餐浪費的食物可供4000人食用一餐.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.25、(1)補全圖形見解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國果脯數據監測研究報告
- 2025年中國林機刀市場調查研究報告
- 2025年中國松香季戊四醇樹脂市場調查研究報告
- 2025年中國木漿墊板市場調查研究報告
- 2025年中國木材著色劑市場調查研究報告
- 2025年中國有柄絨枳市場調查研究報告
- 2025至2031年中國肌酐行業投資前景及策略咨詢研究報告
- 2025年中國無觸點點火系統市場調查研究報告
- 2025年中國整體式可折疊輕型樓房市場調查研究報告
- 新疆機電職業技術學院《測繪工程專業導論》2023-2024學年第二學期期末試卷
- 2025屆上海市華東師范大學二附中高三(最后沖刺)歷史試卷含解析
- 霧化吸入療法合理用藥專家共識(2024版)解讀 2
- 單位食堂勞務外包服務投標方案(技術方案)
- 固體化學導論 第八章固體的擴散與表面化學 第九章固相反應課件
- 2025年內蒙古赤峰新正電工技術服務有限公司招聘筆試參考題庫含答案解析
- 瑜伽授課合同協議
- 穿線分包合同協議
- 電梯有限空間作業安全專項施工方案
- 2025年磁化水防垢除垢裝置項目可行性研究報告
- 2025年廣東省汕頭市高三二模生物試卷(含答案)
- 考后析得失思則得未來-(班會課)段考后試卷分析培養成長型思維
評論
0/150
提交評論