




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數滿足,則()A. B. C. D.2.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.3.已知復數滿足,其中是虛數單位,則復數在復平面中對應的點到原點的距離為()A. B. C. D.4.記單調遞增的等比數列的前項和為,若,,則()A. B. C. D.5.設函數,則,的大致圖象大致是的()A. B.C. D.6.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學家、數學家和物理學家,他和高斯、牛頓并列被稱為世界三大數學家.據說,他自己覺得最為滿意的一個數學發現就是“圓柱內切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.7.設函數滿足,則的圖像可能是A. B.C. D.8.已知函數(e為自然對數底數),若關于x的不等式有且只有一個正整數解,則實數m的最大值為()A. B. C. D.9.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.10.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.11.設i是虛數單位,若復數()是純虛數,則m的值為()A. B. C.1 D.312.下列函數中,在區間上為減函數的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____.14.已知函數,則曲線在點處的切線方程是_______.15.某中學高一年級有學生1200人,高二年級有學生900人,高三年級有學生1500人,現按年級用分層抽樣的方法從這三個年級的學生中抽取一個容量為720的樣本進行某項研究,則應從高三年級學生中抽取_____人.16.已知,則_____。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為(),M為該曲線上的任意一點.(1)當時,求M點的極坐標;(2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.18.(12分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標準方程;(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補,且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,,的斜率按某種排序能構成等比數列?若能,求出的方程,若不能,請說理由.19.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標準方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設P為橢圓上一點,且OM+ON=t20.(12分)設為實數,已知函數,.(1)當時,求函數的單調區間:(2)設為實數,若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(,)有兩個相異的零點,求的取值范圍.21.(12分)已知在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.22.(10分)如圖,在中,點在上,,,.(1)求的值;(2)若,求的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據復數的運算法則,可得,然后利用復數模的概念,可得結果.【詳解】由題可知:由,所以所以故選:A【點睛】本題主要考查復數的運算,考驗計算,屬基礎題.2、C【解析】
在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數原理可得出結果.【詳解】兩組至少都是人,則分組中兩組的人數分別為、或、,
又因為名女干部不能單獨成一組,則不同的派遣方案種數為.故選:C.【點睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.3、B【解析】
利用復數的除法運算化簡z,復數在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數的除法運算,模長公式和幾何意義,考查了學生概念理解,數學運算,數形結合的能力,屬于基礎題.4、C【解析】
先利用等比數列的性質得到的值,再根據的方程組可得的值,從而得到數列的公比,進而得到數列的通項和前項和,根據后兩個公式可得正確的選項.【詳解】因為為等比數列,所以,故即,由可得或,因為為遞增數列,故符合.此時,所以或(舍,因為為遞增數列).故,.故選C.【點睛】一般地,如果為等比數列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數且;(3)為等比數列()且公比為.5、B【解析】
采用排除法:通過判斷函數的奇偶性排除選項A;通過判斷特殊點的函數值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數的定義域為,其關于原點對稱,因為,所以函數為奇函數,其圖象關于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【點睛】本題考查利用函數的奇偶性和特殊點函數值符號判斷函數圖象;考查運算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數值符號是求解本題的關鍵;屬于中檔題、常考題型.6、C【解析】
設球的半徑為R,根據組合體的關系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設球的半徑為R,根據題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點睛】本題主要考查組合體的表面積和體積,還考查了對數學史了解,屬于基礎題.7、B【解析】根據題意,確定函數的性質,再判斷哪一個圖像具有這些性質.由得是偶函數,所以函數的圖象關于軸對稱,可知B,D符合;由得是周期為2的周期函數,選項D的圖像的最小正周期是4,不符合,選項B的圖像的最小正周期是2,符合,故選B.8、A【解析】
若不等式有且只有一個正整數解,則的圖象在圖象的上方只有一個正整數值,利用導數求出的最小值,分別畫出與的圖象,結合圖象可得.【詳解】解:,∴,設,∴,當時,,函數單調遞增,當時,,函數單調遞減,∴,當時,,當,,函數恒過點,分別畫出與的圖象,如圖所示,,若不等式有且只有一個正整數解,則的圖象在圖象的上方只有一個正整數值,∴且,即,且∴,故實數m的最大值為,故選:A【點睛】本題考查考查了不等式恒有一正整數解問題,考查了利用導數研究函數的單調性,考查了數形結合思想,考查了數學運算能力.9、B【解析】
三視圖對應的幾何體為如圖所示的幾何體,利用割補法可求其體積.【詳解】根據三視圖可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點睛】本題考查三視圖以及不規則幾何體的體積,復原幾何體時注意三視圖中的點線關系與幾何體中的點、線、面的對應關系,另外,不規則幾何體的體積可用割補法來求其體積,本題屬于基礎題.10、D【解析】
三個單位的人數可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數可能為2,2,1或3,1,1;基本事件總數有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.11、A【解析】
根據復數除法運算化簡,結合純虛數定義即可求得m的值.【詳解】由復數的除法運算化簡可得,因為是純虛數,所以,∴,故選:A.【點睛】本題考查了復數的概念和除法運算,屬于基礎題.12、C【解析】
利用基本初等函數的單調性判斷各選項中函數在區間上的單調性,進而可得出結果.【詳解】對于A選項,函數在區間上為增函數;對于B選項,函數在區間上為增函數;對于C選項,函數在區間上為減函數;對于D選項,函數在區間上為增函數.故選:C.【點睛】本題考查函數在區間上單調性的判斷,熟悉一些常見的基本初等函數的單調性是判斷的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對原方程兩邊求導,然后令求得表達式的值.【詳解】對等式兩邊求導,得,令,則.【點睛】本小題主要考查二項式展開式,考查利用導數轉化已知條件,考查賦值法,屬于中檔題.14、【解析】
求導,x=0代入求k,點斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1【點睛】本題考查切線方程,求導法則及運算,考查直線方程,考查計算能力,是基礎題15、1.【解析】
先求得高三學生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學生占的比例為,所以應從高三年級學生中抽取的人數為.【點睛】本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.16、【解析】
由已知求,再利用和角正切公式,求得,【詳解】因為所以cos因此.【點睛】本題考查了同角三角函數基本關系式與和角的正切公式。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)點M的極坐標為或(2)【解析】
(1)令,由此求得的值,進而求得點的極坐標.(2)設出兩點的極坐標,利用勾股定理求得的表達式,利用三角函數最值的求法,求得的最大值.【詳解】(1)設點M在極坐標系中的坐標,由,得,∵∴或,所以點M的極坐標為或(2)由題意可設,.由,得,.故時,的最大值為.【點睛】本小題主要考查極坐標的求法,考查極坐標下兩點間距離的計算以及距離最值的求法,屬于中檔題.18、(1);(2)不能,理由見解析【解析】
(1)設,則,由此即可求出橢圓方程;(2)設直線的方程為,聯立直線與橢圓的方程可求得,則直線斜率為,設其方程為,聯立直線與橢圓方程,結合韋達定理可得關于對稱,可求得,假設存在直線滿足題意,設,可得,由此可得答案.【詳解】解:(1)設,則,,所以橢圓方程為;(2)設直線的方程為,與聯立得,∴,因為兩直線的傾斜角互補,所以直線斜率為,設直線的方程為,聯立整理得,,所以關于對稱,由正弦定理得,因為,所以,由上得,假設存在直線滿足題意,設,按某種排列成等比數列,設公比為,則,所以,則此時直線與平行或重合,與題意不符,所以不存在滿足題意的直線.【點睛】本題主要考查直線與橢圓的位置關系,考查計算能力與推理能力,屬于難題.19、(1)x24+【解析】試題分析:本題主要考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標準方程;第二問,討論直線MN的斜率是否存在,當直線MN的斜率存在時,直線方程與橢圓方程聯立,消參,利用韋達定理,得到x1+x2、x1x試題解析:(1)∵e=22,??∴又S=12×2a×2b=4∴橢圓C的標準方程為x2(2)由題意知,當直線MN斜率存在時,設直線方程為y=k(x-1),M(x聯立方程x24+因為直線與橢圓交于兩點,所以Δ=16k∴x又∵OM∴因為點P在橢圓x24+即2k又∵|OM即|NM|<4化簡得:13k4-5k2∵t2=1-當直線MN的斜率不存在時,M(1,??62∴t∈[-1,??考點:橢圓的標準方程及其幾何性質、直線與橢圓的位置關系.20、(1)函數單調減區間為;單調增區間為.(2)(3)【解析】
(1)據導數和函數單調性的關系即可求出;(2)分離參數,可得對任意的及任意的恒成立,構造函數,利用導數求出函數的最值即可求出的范圍;(3)先求導,再分類討論,根據導數和函數單調性以及最值得關系即可求出的范圍【詳解】解:(1)當時,因為,當時,;當時,.所以函數單調減區間為;單調增區間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設,,則,所以函數在上單調遞減,在上單調遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數在上單調遞增,所以函數至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當時,,所以,所以,所以當時,函數的值域為.所以,存在,使得,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 游戲化教學在小學語文低年段識字中的應用與效果研究論文
- 花園及菜園管理制度
- 茶具洗消間管理制度
- 草莓收購點管理制度
- 苗木銷售合同 (一)
- 財務會計工作計劃 (七)
- 課程計劃與課程標準
- 計算流體力學網格生成方法閱讀筆記
- 湖北省孝感市安陸市2024-2025學年七年級下學期期中道德與法治試題(含答案)
- 自動控制理論課程設計課程教學大綱
- 中鋁中州礦業有限公司禹州市方山鋁土礦礦山地質環境保護和土地復墾方案
- 職業衛生知識培訓記錄
- 起重設備維護保養記錄(完整版)
- 網絡信息安全培訓課件-PPT
- 北京市醫藥衛生科技促進中心關于印發《首都醫學科技創新成果轉化優促計劃實施方案(試行)的通知》
- (完整版)互聯網+項目策劃書
- THBLS 0011-2023 荊楚糧油 優質油菜籽生產技術規程
- 2023春國開社會調查研究與方法單元自測1-5試題及答案
- 美國AHA心肺復蘇指南
- HAND-成本模塊:移動平均成本-系統操作
- 慢阻肺匯總講解培訓課件
評論
0/150
提交評論