




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter
4Best
estimateindexBasic
knowledge
of
random
systemBasic
method
of
estimateKalman
filter
the
waves
in
basic
discreKalman
filter
the
waves
in
normal
discreinear
systeminear
systeminear
system
under5.Kalman
filter
the
waves
in
discrecolorful
yawp.The
stability
of
Kalman
filter
the
waves
and
error
yze.The
relationship
of
Kalman
filter
the
waves
with
best
control.北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Best
estimateintroductionThe
systems
we yzed
before
are
determinate
systems.
In
those
systems,theinitially
states
are
determinate
known,
the
input
is
a
determinate
knowntimefunction
or
a
linear
state
function,
and
the
output
is
a
linear
state
function
and
nosurvey
error.But
in
fact,
the
systems
we
often
met
are
the
other
type
systems.
In
those
system,theinitially
states
are
random
vector,
and
we
don’t
know
its
determinate
value
but
knowits
mathematical
expectation
and
variance.
Those
system
are
effected
not
only
by
thedeterminate
input,
but
also
by
some
random
interfere.
So
the
states
of
those
systemare
not
determinate
functions
but
random
processes.
How
to
estimate
the
systemstates
form
the
random
interfere
and
to
best
control
is
the
problems
of
best
estimate.The
problems
of
best
estimate
include
two
types,
one
is
parameter
estimate,
the
otheris
state
estimate.
The
main
method
to
solving
the
second
type
problem
is
Kalmanfilter
the
wave,
which
is
the
emphases
of
this
chapter.北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(1)F
()
p{x
}0
F
()
1The
derivative(導(dǎo)數(shù))of
the
distributionfunction
is
probability
density
function
p().dF
()dp()
F
()
p(x)dx
p(x)dx
1一.The
Statistic
speciality
of
random
variable
and
random
vector.1.The
Statistic
speciality
of
random
variable.隨
量的統(tǒng)計特性.Consider
X
is
a
random
variable, is
its
possible
value, can
becontinuous
or
discrete,
and
X
is
called
respectively
continuous
randomvariable
or
discrete
random
variable.As
a
continuous
random
variable
X,
F
()
is
its
distribution
function.Basic
knowledge
of
randomsystem
(2)Some
other
mathematical
expression
of
random
variable.(1)mathematical
expectation
數(shù)學(xué)期望E[x]x
p
i
i
xE[x]
p(
)d
i1E[x]
E[C]
CC
is
a
constantmathematical
expectation
ofcontinuous
random
variable:mathematical
expectation
ofdiscrete
random
variable:mathematical
expectation
havefollow
theorem:E[
X
Y
]
E[
X
]
E[Y
]X,Y
are
random
variablen
nE[i
Xi
]
i
E[
Xi
]i1
i1i
are
constantBasic
knowledge
of
randomsystem
(3)(2)Variance
方差Var(x)xVar(
X
)
E[(
X
E(
X
) ]
E[(
X
)
]2
(
)
p(
)dx2
2IfX
is
in
normal
distribution(正態(tài)分布),its
probability
density
is:12
xxe2
2(
x
)2p()
It
can
be
simply
note2x
xX
~
N
(
,
)Variance
havefollow
theorem:Var(C)
0Var(CX
)
C
2
Var(
X
)n
naia
j
E[(Xi
xi
)(
X
j
xj
)]i1
i1
j
1nVar[
ai
Xi
]
Basic
knowledge
of
randomsystem
(4)
E[(
X1
x
)(
X
2
x1
2
E[(
X1
X
2
)]
x
x1
2Correlation
coefficient
相關(guān)系數(shù))](3)Covariance
協(xié)方差COV(X1,X
2)COV
(
X1
,
X
2
)
E[(
X1
EX1
)(
X
2
EX
2
)]
x
x1
21
2COV
(
X1
,
X
2
)
x
xVar(
X
)
Var(
X
)1
21
20
x
x
1is
independence.1
2
=0,x
x1
2X
,
Xx1x2
=1,
X1
,
X
2iscomple y
linearcorrelation.Basic
knowledge
of
randomsystem
(5)(4)high-order
moment
高階距E(
X
n
)
n
p(
)dnE[(
X
)]
n(
)
p()dxn
order
origin
momentn階原點距n
order
central
momentn階中心距2.The
Statistic
speciality
of
random
vector.Consider
vector
X,
which
component
X1
,
X
2
,variable,
that
vector
is
called
random
vector.Xn
are
random講解!北理工《自動控制理論》考研
,
、考點、典型題、命題規(guī)律獨家詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(6)Union
distribution
function
of
random
vector
F
(),
n
)
p{X1
1,
X
2
2
,,
Xn
,
xn
)dx1dx2,
xnn
}F
()
F
(1,2
,F
()
F
(1,2
,d
x
n1
2
n,
n
)
p(x1,
x2
,p(x1,
x2
,Union
distribution
density
function
isOrp(x1,x2,
,
xn
))Some
qualities
of:p(x1,
x2
,
,
xn
)
0
p(x1
,
x2
,dxn
1,
xn
)dx1dx2p{(1,2
,d
x
np(x1,
x2
,
n
)
S}
sp(x1,
x2
,
,
xn
)dx1dx2
,
xk
)
p(x1
,
x2
,
,
xn)dxk
1
dxn
Basic
knowledge
of
randomsystem
(7)There
is
also
average
value
matrix
andvariance
matrix
of
random
vector
X,
andcovariance
matrix
of
X,Y.
xn
n
E(
X
)E(
X
)
2E(
X
)
x2
E(
X1
)
x1
nxnn
xnnxn
R
1
nCOV
(
X
,
X
)Var(
X
)COV
(
X
,
X
))(
X)]Var(
X
)
E{[
X
E(
X
)][X
E(
X
)]T
}
n
1COV
(
X
,
X
)2
n22
1Var(
X1)2
x2222)
]n
xn
2
x2x21
x12x221
x11
x1
nVar(
X
)COV
(
Xn
,
X
2
)
COV
(
X1
,
X
2
)COV
(
X1,
Xn
)E[(
X
)2
])]
E[(
X
1E[(
X
)(X
x1E[(
X
)(
X
)]1
E[(
Xx
n
)(
Xx
E[(
X
)(
X
)]
)]xE[(
X
)2
])]E[(
X
E[(
X
)(
XVar(X)
is
a
symmetrymatrixBasic
knowledge
of
randomsystem
(8)n
2
n
m
2
1
2
2
2
mCOV
(
X
,Y
)COV
(
Xn
,Y1
)
COV
(
X
,Y
)COV
(
X
,Y
)
E{[
X
E(
X
)][Y
E(Y
)]T
}
XC1,OYVm
)(X
,Y
)
COV
(
X
,Y
)
COV
(
X
,Y
)COV
(
X1
,Y1)
COV
(
X1
,Y2
)
COV
(
COV
(
X
,Y
)
[COV
(Y,
X
)]TSoIf
COV(X,Y)=0,
random
vectors
X
and
Y
are
independence.If
random
vector
X
is
in
normal
distribution,
which
is
called
Gaussrandom
vector,
and
its
union
distribution
density
function
is11(2
)2
R
22exp{
1
(x
)T
R1
(x
)}np(x)
p(x1,
x2
,
,
xn
)講解!北理工《自動控制理論》考研
,
、考點、典型題、命題規(guī)律獨家詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(9)For
example,
X
is
2
dimensions
vector.
Then
:
2
1
2
2
1
2
21222
)]
x21
x12
x2x21x1
1
x12E[(X
)
]E[(X
)(X
)]
E[(X
)
]
E[(X
)(XR
222121Var(X
)Var(X
)Thereinto:
1
2is
the
correlation
coefficient
of
X
,
XThen
:
2
2
21
221 2
212
211
1(1
)(1
)
))
(1
(1
R
1
12
2
2
)
R
(1Basic
knowledge
of
randomsystem
(10)So11)11exp112
22
x223
212
2
21
21
212
21
2222121
21
22
2
x2
1
21
x1
2x1T
2
(x
)(
x
)
]}
(x
)
[(x
)
)2
(1
exp{
11
2x1
}
x
x2
x2
1 2
2
)
(1
(1
(1
)
(1
)1
x1
2
x2
x
2
1
x
{1
2p(x)
p(x
,
x
)
Union
distribution
densityfunction
of
2
dimensions
randomvector
express
by
figure
is:If
0
then
p(x1,
x2
)
p(x1
)
p(x2
)1
2p(x
,
x
)x1x2x1x2Basic
knowledge
of
randomsystem
(11)There
are
some
theorems
about
normal
random
vector.Theorem
1:
If
normal
random
variables
(vectors)X,
Yarenoncorrelation, then
they
are
independent
.Theorem
2:
If
random
variables
(vectors)
are
unian
normaldistribution
,then
their
variable
(vector)
are
also
normaldistribution.Theorem
3:
Linear
transform
and
linear
assemble
for
normalvariable
(vector),
also
are
normal
variable
(vector).p(x,
y)
p(x
|
y)
p2
(
y)
p(
y
|
x)
p1(x)p(,
)
p(
|
)
p2
(
)
p(
|
)
p1()Bayes’s
rule:orBasic
knowledge
of
randomsystem
(12)E[x|y]
is
when
y=
,the
averagevalue
of random
vector
X,calledconditional
average
value.E[
X
|
Y
y]
E[
X
|
Y
]
xp(x
|
y)dxE[
X
|
Y
]
E[
X
|
]
p(
|
)dTheorem
4:X,Y,and
Z
are
union
distribute
variables
or
vectorsx,yand
zare
the
possible
value
.a,bare
constants,
g(.)
is
scale
functionand
E[X],
E[Z],
E[g(Y)X]
are
existE[
X
|
y]
E[
X
]E(
X
)
E{E[
X
|
y]}E[g(Y
)
X
|
y]
g(Y
)
E[
X
|
y]E[g(Y
)x]
E{g(Y
)
E[
X
|
y]}E[a
|
y]
aE[g(Y
)
|
y]
g(
y)E[aX
bZ
|
y]
a
E[
X
|
y]
b
E[Z
|
y]北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(13)Theorem
5:Assume
random
variabls
(vectors)
X,Y
are
union
normaldistribution
,when
given
Y
condition
distribution
density
of
X
is
alsonormal
distribution
and
conditio
age
and
condition
variance
are:E[
X
|
Y
]
E[
X
]
COV
(
X
,Y
)[Var(Y
)]1(
y
EY
)Var(
X
|
Y
)
Var(
X
)
COV
(
X
,Y
)[Var(Y
)]1COV
(Y
,
X
)北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(14)二.Basic
knowledge
of
random
process.1.Concept
and
distribution
function
of
random
process.If
random
variable
X
follo rameter
t
to
change,
then
thecollectivity
of
X
{X(t),tD}
is
called
random
process.
Thereintoparameter
t
can
be
time
or
space
coordinate,
D
is
the
valuecollection
of
parameter
t.
If
collection
D
is
all
or
half
of
numberaxis,
then
{X(t)}
is
continuous
random
process.
And
if
collectionD
is
positive
integer,
then
{X(t)}
is
discrete
random
process,random
sequence
or
time
sequence.To
random
process
{X(t),t
D},
when
t
equal
N
values,
it
can
get
Nrandom
variables
(
X
(t1
)),
(
X
(t2
)
)
, (
X
(tN
)).
And
its
uniondistribution
function
is
called
random
process
N
dimensions
distribute.FN
(x1,
x2
,
,
xN
;t1,
t2
,
,
tN
)
p{X
(t1)
x1,
X
(t2
)
x2
,
,
X
(tN
)xN
}Basic
knowledge
of
randomsystem
(15),
xN
;t1,
t2
,If
function
p(x1,
x2
, ,
tN
)
exist,
to
makex1
x2
xN,
tN
)
pN
(1,2
,FN
(x1
,
x2
, ,
xN
;t1
,
t2
,,
N
;t1
,
t2
,,
tN
)d1,d2,,
dNright.
,
xN
;t1,
t2
, ,
tN
)Then
called
function
p(x1,
x2
,
is
Ndimension probability
density
function
of
thisrandom
process.When
t
equal
N
other
values,
it
can
getN
other
union
distributionfunction
and
N
dimensions
probability
density
function.
Itsensemble
distribution
function
is
called
random
process
limiteddimension
distribution
group.隨機過程的有限維分布族。{FN
(x1,
x2
,
,
xN
;t1,
t2
,
,
tN
),t1,
t2
,
,
tN
D,
N
Basic
knowledge
of
randomsystem
(16)Characteristic
function
of
random
process.隨機過程特征函數(shù)。Some
characteristic
functions
followed.Average
value
function
and
Average
value
functionvector.均值函數(shù)與均值函數(shù)向量。Covariance
function
and
Covariance
function
matrix.協(xié)方差函數(shù)與協(xié)方差函數(shù)陣。Auto-correlation
function
andAuto-correlation
function
matrix.自相關(guān)函數(shù)與自相關(guān)函數(shù)陣。Cross
covariance
function
and
Cross
correlation
function
.互協(xié)方差函數(shù)與互相關(guān)函數(shù)北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(17)N3.independence,
correlation
and
stationary
of
random
process.獨立性、相關(guān)性和平穩(wěn)性。If
for
a
random
process,the
follow
equation
is
true,
then
therandom
process
is
independence.FN
(x1,
x2
,
,
xN
;t1,
t2
,
,
tN
)
F1(xi
,
ti
)i1If
for
two
random
processes,
the
follow
equation
is
true,then
the
two
random
processes
is
cross
independence.FN
(x1
,
x2
,,xN
;
y1,
y2
,,yN
;t1,
t2
,,
tN
)
FN
(x1
,
x2
,, ,tN
),
xN
;t1,
t2
,,tN
)
FN
(
y1,y2
,,yN
;t1,
t2北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(18)2If
a
random
vector
process: (t
,
t
)
E[
X
(t
)
X
T
(t
)]
E[
X
(t
)]
E[
X
T
(t
)],t
tx
1
2
1
2
1
2
1Or:
R
(t
,
t
)
(t
,
t
)
(t
)
T
(t
)
0x
1
2
x
1
2
x
1
x
2Then
the
random
process
is
non-correlation
process.If
n
dimensions
random
vector
process
{X(t),t D}
and
m
dimensionsrandom
vector
process
{Y(t),t D}
: (t
,t
)
E[
X
(t
)
YT
(t
)]
E[
X
(t
)]
E[YT
(t
)],t
,
t
,
Dxy
1
2
1
2
1
2
1
2Txy
1
2
1
x
1
2
y
2R
(t
,
t
)
E{[
X
(t
)
(t
)][Y
(t
)
(t
)] }
0Or:Then
the
two
random
processes
are
cross
non-correlation
processes.北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(19)FN
(x1
,
x2
,
,
xN
;t1,
t2
,
,
tN
)
FN
(x1
,
x2
,If
a
random
process
is
a
independence
process
then
it
is
a
non-correlation
process
without
fail,
but
a
non-correlation
process
isnot
always
a
independence
process.
A
random
vector
process
isthesame.If
a
random
process
:FN
(x1
,
x2
,
,
xN
;t1
,
t2
,
,
tN
)
FN
(x1
,
x2
,
,
xN
;t1
,
t2
, ,
tN
)Then
it
is
a
strict
stationary
random
process.(嚴格平穩(wěn)隨機過程)then,
xN
;0,t2
t1As
a
strict
stationary
random
process
:
t1,
tN
t1
)北理工《自動控制理論》考研,,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(20)As
a
strict
stationary
random
process
:p1(x,
t)
p(x,0)
p(x)x
(t)
E[
X
(t)]
xp1(x)dx
xp2
(x1,
x2
;t1,
t2
)
p2
(x1,
x2
;0,
t2Rx
(t1,
t2
)
COV
[
X
(t1
),
X
(t2
)]
1
dimension
distribution
densityaverage
value2
dimensions
distribution
density2Tx
1
2
t1
)dx1dx2
]
p(
x
,
x
;0,
t[x1
x
][x2
const
t1)
Covariancefunction
matrixx
xT
p(x
,
x
;0,t
t
)dx
dx
(
)R(0,
t2
t1
)
R(t2
t1
)
R(
)
x
(t1,
t2
)
COR[
X
(t1
),
X
(t2
)]
1
2
1
2
2
1
1
2
xAuto-correlation
functionmatrixBasic
knowledge
of
randomsystem
(21)Stationary
random
process
of
broad
sense.(廣義平穩(wěn)隨機過程)Average
value
and
Covariance
function
:111TTTx][x(t
)
]
dt
(
)xT
xTTCOV
[
X
(t),
X
(t
)]
lin
[x(t)
x(t)dt
2TE[
X
(t)]
linT
To
be
a
stationary
random
process
of
broad
sense
must:
lin
(
)
0
lin
(
)
0Or北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(22)Some
specifically
random
process.幾個特定的隨機過程。white
noise
process
and
white
noise
sequence.白噪聲過程和白噪聲序列。normal
random
process.正態(tài)隨機過程。(3)Markov
Process.過程北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(+1)(1)
Average
value
function
and
Average
value
function
vector.均值函數(shù)與均值函數(shù)向量。To
random
variable
process,
its
average
value
function
is
:E[
X
(t)]
x
(t)
x
p1
(x,
t)dxThereinto,
p(x,t)
is
1
dimension
density
function.x
(t)
is
non-random
time
function.To
random
vector
process,
average
value
function
is
a
vector.x
(t)
[x
(t),
x
(
t
), ,
x(t)]T1
2
nx
(t)
E[
Xi
(t)]iAndReturnBasic
knowledge
of
randomsystem
(+2)2x
x
xVar[
X
(t)]
E{[
X
(t)
(t)][
X
(t)
(t)]}
(t)
x
(t)
is
average
Variance
of
random
process.Covariance
function
matrix
of
random
vector
process.(2)
Covariance
function
and
Covariance
function
matrix.協(xié)方差函數(shù)和協(xié)方差函數(shù)陣。Covariance
function
of
random
process.COV
[
X
(t1),
X
(t2
)]
E{[
X
(t1
)
x
(t1
)][
X
(t2
)
x
(t2
)]}
x
(t1,
t2
)All
appearance,
COV
[
X
(t1
),
X
(t2
)]
is
the
function
oft1,
t2,when
t1
t2
t
it
is
Variance
function
of
random
process.北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(+3)COV[
X
(t
),
X
(t
)]COV[
Xn
(t1),
X1
(t2
)]
COV
[
Xn
(t1),
X
2
(t2
)]
COV
[
Xn
(t1),
Xn
(t2
)]Tx
2
x
1
2COV[
X
(t1),
X
(t2
)]
E{[
X
(t1)
x
(t1
)][X
(t2
)
COV
[
X1
(t1),
X1
(t2
)]
COV
[
X1
(t1),
X
2
(t2
)]2
1
n
2COV
[
X
(t
),
X
(t
)]
COV
[
X
(t
),
X
(t
)]2
1
1
22
1
2
2
COV
[
X1
(t1),
Xn
(t2
)](t
)]
}
R
(t
,
t
)
All
appearance,
COV
[
X
(t1),
X
(t2
)]
COV
[
X
(t
2),
X
(t1)]TWhen
t1
t2
t
,Var[
X
(t)]
Rx
(t)which
is
Variance
function
matrix
of
random
processReturn北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(+4)(3)Auto-correlation
function
and
Auto-correlation
function
matrix.自相關(guān)函數(shù)與自相關(guān)函數(shù)陣。Auto-correlation
function
of
random
process:COR[X
(t1),
X
(t2
)]
E{X
(t1)
X
(t2
)}
x
(t1,
t2
)The
relation
of
auto-correlation
function,
covariance
functionand
averagevalue
function.
x
(t1,
t2
)
x
(t1,t2
)
x
(t1)
(t2
)For
random
process,
it
is
follow
equations:COR[
X
(t
),
X
(t
)]
E{X
(t
)
X
T
(t
)}
(t
,
t
)1
2
1
2
x
1
2R
(t
,
t
)
(t
,
t
)
(t
)
T
(t
)x
1
2
x
1
2
x
1
x
2Basic
knowledge
of
randomsystem
(+5)(4)Cross
covariance
function
and
Cross
correlation
function
.互協(xié)方差函數(shù)與互相關(guān)函數(shù)Cross
covariance
function
of
two
random
process
{X(t),tD}
and{Y(t),tD}
in
two
time
t1,
t2
.
And
of
vectorprocess.COV
[
X
(t1
),Y
(t2
)]
E{[
X
(t1
)
x
(t1
)][Y
(t2
)
y
(t2
)]}
xy
(t1,
t2
)Ty
2
xy
1
2(t
)]
}
R
(t
,
t
)COV
[
X
(t1
),Y
(t2
)]
E{[
X
(t1)
x
(t1
)][Y
(t2
)
Cross
correlation
function
of
two
random
process
and
vector
process.COR[
X
(t1
),Y
(t2
)]
E{X
(t1)
Y
(t2
)}
xy
(t1,
t2
)(t
,
t
)1
2
1
2
xy
1
2TCOR[X
(t
),Y
(t
)]
E{X
(t
)
Y
(t
)}
Return北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(+6)The
relation
of
Cross
covariance
function, Cross
correlationfunction
and
Average
value
function.
xy(t1,
t2
)
xy
(t1,
t2
)
x
(t1)
y
(t2
)Rxy
(t1,
t2
)
xy
(t1,
t2
)
x
(t1
)
T
(t
)y
2The
Characteristic
functions
we
studied
hereinbefore
is
forcontinuous
random
process,
and
discrete
random
process
havecorresponding
functions
but
the
parameter
is
discrete.Return北理工《自動控制理論》考研,、考點、典型題、命題規(guī)律獨家講解!詳見:網(wǎng)學(xué)天地(
);咨詢Basic
knowledge
of
randomsystem
(+7)(1)white
noise
process
and
white
noise
sequence.白噪聲過程和白噪聲序列。
(t
)dt
1,
t
(t
)
0,t
Dirac
functionk
j(k
)
COR[
X
(k),
X
(
j)]
CThen
it
is
white
noise
sequence.
Andk
j0,
k
j
1,
k
jIf
a
random
vector
process
which
auto-correlationfunction
matrix
can
be
transform
to:
x
(t,
)
COR[X
(t),
X
(
)]
K
(t)
(t
)Then
it
is
white
noise
process.
And
()
C
()To
discrete
time
sequence,
if
it
is
non-correlation,and
its
auto-correlation
function
can
be
transformto:
Kroneckerfunctionk
j
x
(k)
COR[
X
(k
),
X
(
j)]
RkBasic
knowledge
of
randomsystem
(+8)(2)normal
random
process.正態(tài)隨機過程。For
n
dimensions
vector
process,
if
its
union
probability
density
functioncan
be
transform
to
the
follow
form,
then
it
is
normal
random
process.21
11R
2x
xexp{ (x
)
R
(x
)}(2
)p(x)
T
1m
n2Thereinto
:
xm
x
m
x
x2
E[
X
(t
)]
m
x
,
2
E[
X
(t
)]
E[
X
(t1
)]
x
1
x
2
x1
They
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合肥公司活動策劃方案
- 吉林品牌店活動策劃方案
- 同事團建活動策劃方案
- 名校學(xué)子比賽活動方案
- 向標桿看齊活動方案
- 臺球濮陽活動方案
- 衛(wèi)浴開店活動方案
- 單位塑料污染活動方案
- 卡丁車商場活動方案
- 古鎮(zhèn)景區(qū)活動方案
- 撬裝加油站承包合同協(xié)議書
- 國家開放大學(xué)行管本科《政府經(jīng)濟學(xué)》期末考試總題庫2025春期考試版
- 《自發(fā)性腹膜炎》課件
- 2024年03月廣東2024年珠海華潤銀行社會招考(33)筆試歷年參考題庫附帶答案詳解
- 14-2《變形記》(節(jié)選)公開課一等獎創(chuàng)新教學(xué)設(shè)計統(tǒng)編版高中語文必修下冊
- 卸料平臺培訓(xùn)課件
- 2025年陽光財產(chǎn)保限公司招聘筆試參考題庫含答案解析
- 監(jiān)理工作廉潔自律制度及措施
- 公司法知識競賽考試題庫100題(含答案)
- 物業(yè)管理項目主動撤場
- 三年級數(shù)學(xué)升學(xué)測試試卷
評論
0/150
提交評論