




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
..間接證明課時目標1.認識反證法是間接證明的一種基本方法.2.理解反證法的思慮過程,會用反證法證明數學問題.1.間接證明不是直接從原命題的條件漸漸推得命題成立,這種______________________的方法平時稱為間接證明.__________就是一種常用的間接證明方法,間接證明還有__________、__________等.2.反證法反證法證明過程反證法的證明過程能夠概括為“__________—推理—________”,即從__________開始,經過__________,以致______________,從而達到____________(即必然原命題)的過程.必然條件p以致邏“且”“若p則”→輯矛盾→為假→為真反證法證明命題的步驟________——假設____________不成立,即假設原結論的反面為真.②歸謬——從________和____________出發,經過一系列正確的邏輯推理,得出矛盾結果.③存真——由____________,判斷反設不真,從而必然原結論成立.一、填空題1.用反證法證明命題“三角形的內角至多有一個鈍角”時,假設__________________.1112.設x、y、z>0,則三數x+y,y+z,z+x的值______.①都大于2②都不小于2③最少有一個不小于2④最少有一個不大于23.用反證法證明命題:“若整系數一元二次方程ax2+bx+c=0有有理根,那么a,b,c中存在偶數”時,否定結論應為________________________.4.“實數a、b、c不全為0”的含義是_________________________________________.5.若以下兩個方程x2+(a-1)x+a2=0,x2+2ax-2a=0中最少有一個方程有實根,DOC版...則實數a的取值范圍是__________________.6.用反證法證明命題“x2-(a+b)x+ab≠0,則x≠a且x≠b”時應假設為____________.7.用反證法證明“一個三角形不能夠有兩個直角”有三個步驟:①∠A+∠B+∠C=90°+90°+∠C>180°,這與三角形內角和為180°矛盾,故假設錯誤.②因此一個三角形不能夠有兩個直角.③假設△ABC中有兩個直角,不如設∠A=90°,∠B=90°.上述步驟的正確序次為__________.(填序號)8.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說:“是乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了.”丁說:“是乙獲獎.”四位歌手的話只有兩句是對的,則獲獎的歌手是________.二、解答題1119.已知三個正數a,b,c成等差數列,且公差d≠0,求證:a,b,c不能能成等差數列.10.以下列圖,已知△ABC為銳角三角形,直線SA⊥平面ABC,AH⊥平面SBC,H為垂足,求證:H不能能是△SBC的垂心.DOC版...能力提升211.已知數列{an}滿足:a1=λ,an+1=3an+n-4,其中λ為實數,n為正整數.求證:對任意實數λ,數列{an}不是等比數列.xx-212.已知函數f(x)=a+x+1(a>1),用反證法證明方程f(x)=0沒有負數根.1.在使用反證法時,必定在假設中列出與原命題相異的結論,缺少任何一種可能,反證法都是不完好的.2.推理必定從假設出發,不用假設進行論證就不是反證法.3.對于否定性命題,結論中出現“至多”、“最少”、“不能能”等字樣時,常用反證法.DOC版...2.2.2間接證明答案知識梳理1.不是直接證明反證法同一法列舉法2.(1)否定否定否定結論正確的推理邏輯矛盾新的否定否定結論q(2)①反設命題結論②反設已知條件③矛盾結果作業設計1.最少有兩個鈍角2.③剖析假設三個數都小于2,111則x+y+y+z+z+x≤6111而x+y+y+z+z+x111=x+x+y+y+z+z≥6矛盾,故③正確.3.a,b,c都不是偶數4.a、b、c中最少有一個不為05.{a|a≤-2或a≥-1}6.x=a或x=b剖析否定結論時,必然要全面否定,x≠a且x≠b的否定為x=a或x=b.7.③①②剖析觀察反證法的一般步驟.8.丙剖析若甲說的話對,則丙、丁最少有一人說的話對,則乙說的話不對,則甲、丙最少有一個人獲獎是對的.又∵乙或丙獲獎,∴丙獲獎.1119.證明假設a,b,c成等差數列,211a+c則b=a+c=ac.DOC版...∵a,b,c成等差數列,∴2b=a+c,22b2∴b=ac?b=ac.a+c222∴=ac?(a+c)=4ac?(a-c)=0?a=c.又2b=a+c,∴a=b=c.因此,d=b-a=0,這與d≠0矛盾.111因此a,b,c不能能成等差數列.10.證明假設H是△的垂心,SBC連接BH并延長BH與SC訂交,則BH⊥SC.又∵AH⊥平面SBC,AH⊥SC,SC⊥平面ABH,SC⊥AB.又∵SA⊥平面ABC,AB⊥SA.AB⊥平面SAC,∴AB⊥AC.即∠BAC=90°,這與三角形ABC為銳角三角形矛盾,因此H不能能是△SBC的垂心.11.證明假設存在一個實數λ,使數列{a}是等比數列,則有2n21324即3λ-32=λ9λ-4,4242即9λ-4λ+9=9λ-4λ,即9=0,上式顯然不成立,因此假設不成立,因此數列{an}不是等比數列.12.證明假設方程f(x)=0有負數根,設為x(x≠-1).則有x<0,且f(x)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內科護理學題庫(附參考答案)
- 旅游產品及服務提供合同
- 農機租賃與維修服務合作合同書
- 財務管理咨詢服務的協議
- 江蘇移動2025春季校園招聘筆試參考題庫附帶答案詳解
- 2025湖南長沙振望投資發展有限公司招聘8人筆試參考題庫附帶答案詳解
- 2025廣西玉柴鑄造有限公司實習生招聘100人筆試參考題庫附帶答案詳解
- 2025年河南空港數字城市開發建設有限公司第一批社會公開招聘20人筆試參考題庫附帶答案詳解
- 2025年威海光明電力服務有限公司招聘(約40人)筆試參考題庫附帶答案詳解
- 2025年3月湖南自由貿易試驗區臨空產業投資集團有限公司招聘6人筆試參考題庫附帶答案詳解
- 基于交通沖突的信號交叉口交通安全評價研究論文設計
- 小學心理健康教育課件《微笑的力量》
- 心理健康案例分析試題
- 繼電保護單選練習題庫及答案
- 新疆功能性高分子材料項目可行性研究報告
- 小升初第一講-簡便運算課件
- (198)-秦可卿課件2紅樓夢人物藝術鑒賞
- 基于Navier-Stokes方程的圖像處理與應用研究
- 銅螺母標準相關參考內容
- 八大作業票填寫模板
- 三年級小機靈杯試題(常用版)
評論
0/150
提交評論