2023學年度教案-直角三角形22_第1頁
2023學年度教案-直角三角形22_第2頁
2023學年度教案-直角三角形22_第3頁
2023學年度教案-直角三角形22_第4頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2.直角三角形(二)教學目標1.知識目標:①能夠證明直角三角形全等的“HL”的判定定理,進一步理解證明的必要性②利用“HL’’定理解決實際問題2.能力目標:①進一步掌握推理證明的方法,發(fā)展演繹推理能力教學重點,HL的理解及應用教學難點HL的理解及應用教學過程1、創(chuàng)設情境,導入新課1.判斷兩個三角形全等的方法有哪幾種?2.已知一條邊和斜邊,求作一個直角三角形。想一想,怎么畫?同學們相互交流。3、有兩邊及其中一邊的對角對應相等的兩個三角形全等嗎?如果其中一個角是直角呢?請證明你的結(jié)論。我們曾從折紙的過程中得到啟示,作了等腰三角形底邊上的中線或頂角的角平分線,運用公理,證明三角形全等,從而得出“等邊對等角”。那么我們能否通過作等腰三角形底邊的高來證明“等邊對等角”.要求學生完成,一位學生的過程如下:已知:在△ABC中,AB=AC.求證:∠B=∠C.證明:過A作AD⊥BC,垂足為C,∴∠ADB=∠ADC=90°又∵AB=AC,AD=AD,∴△ABD≌△ACD.∴∠B=∠C(全等三角形的對應角相等)在實際的教學過程中,有學生對上述證明方法產(chǎn)生了質(zhì)疑。質(zhì)疑點在于“在證明△ABD≌△ACD時,用了“兩邊及其中一邊的對角分別相等的兩個三角形全等”.而我們在前面學習全等的時候知道,兩個三角形,如果有兩邊及其一邊的對角相等,這兩個三角形是不一定全等的.可以畫圖說明.(如圖所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD與△ABC不全等)”.也有學生認同上述的證明。教師順水推舟,詢問能否證明:“在兩個直角三角形中,直角所對的邊即斜邊和一條直角邊對應相等的兩個直角三角形全等.”,從而引入新課。2、合作探究,理解新知(1).“HL”定理.由師生共析完成已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′.求證:Rt△ABC≌Rt△A′B′C′證明:在Rt△ABC中,AC=AB2一BC2(勾股定理).又∵在Rt△A'B'C'中,A'C'=A'C'=A'B'2一B'C'2(勾股定理).AB=A'B',BC=B'C',AC=A'C'.∴Rt△ABC≌Rt△A'B'C'(SSS).教師用多媒體演示:定理斜邊和一條直角邊分別相等的兩個直角三角形全等.這一定理可以簡單地用“斜邊、直角邊”或“HL”表示.從而肯定了第一位同學通過作底邊的高證明兩個三角形全等,從而得到“等邊對等角”的證法是正確的.練習:判斷下列命題的真假,并說明理由:(1)兩個銳角對應相等的兩個直角三角形全等;(2)斜邊及一銳角對應相等的兩個直角三角形全等;(3)兩條直角邊對應相等的兩個直角三角形全等;(4)一條直角邊和另一條直角邊上的中線對應相等的兩個直角三角形全等.對于(1)、(2)、(3)一般可順利通過,這里教師將講解的重心放在了問題(4),學生感覺是真命題,一時有無法直接利用已知的定理支持,教師引導學生證明.已知:R△ABC和Rt△A'B'C',∠C=∠C'=90°,BC=B'C',BD、B'D'分別是AC、A'C'邊上的中線且BD=B'D'(如圖).求證:Rt△ABC≌Rt△A'B'C'.證明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B'D'C'(HL定理).CD=C'D'.又∵AC=2CD,A'C'=2C'D',∴AC=A'C'.∴在Rt△ABC和Rt△A'B'C'中,∵BC=B'C',∠C=∠C'=90°,AC=A'C',∴Rt△ABC≌CORt△A'B'C(SAS).通過上述師生共同活動,學生板書推理過程之后可發(fā)動學生去糾錯,教師最后再總結(jié)。做一做問題你能用三角尺平分一個已知角嗎?請同學們用手中的三角尺操作完成,并在小組內(nèi)交流,用自己的語言清楚表達自己的想法.(設計做一做的目的為了讓學生體會數(shù)學結(jié)論在實際中的應用,教學中就要求學生能用數(shù)學的語言清楚地表達自己的想法,并能按要求將推理證明過程寫出來。)議一議如圖,已知∠ACB=∠BDA=90°,要使△ACB≌BDA,還需要什么條件?把它們分別寫出來.這是一個開放性問題,答案不唯一,需要我們靈活地運用公理和已學過的定理,觀察圖形,積極思考,并在獨立思考的基礎上,通過同學之間的交流,獲得各種不同的答案.(教師一定要提供時間和空間,讓同學們認真思考,勇于向困難提出挑戰(zhàn))3、深化知識,學以致用如圖,在△ABC≌△A'B'C'中,CD,C'D'分別分別是高,并且AC=A'C',CD=C'D'.∠ACB=∠A'C'B'.求證:△ABC≌△A'B'C'.分析:要證△ABC≌△A'B'C',由已知中找到條件:一組邊AC=A'C',一組角∠ACB=∠A'C'B'.如果尋求∠A=∠A',就可用ASA證明全等;也可以尋求么∠B=∠B',這樣就有AAS;還可尋求BC=B'C',那么就可根據(jù)SAS.……注意到題目中,通有CD、C'D'是三角形的高,CD=C'D'.觀察圖形,這里有三對三角形應該是全等的,且題目中具備了HL定理的條件,可證的Rt△ADC≌Rt△A'D'C',因此證明∠A=∠A'就可行.證明:∵CD、C'D'分別是△ABC△A'B'C'的高(已知),∴∠ADC=∠A'D'C'=90°.在Rt△ADC和Rt△A'D'C'中,AC=A'C'(已知),CD=C'D'(已知),∴Rt△ADC≌Rt△A'D'C'(HL).∠A=∠A',(全等三角形的對應角相等).在△ABC和△A'B'C'中,∠A=∠A'(已證),AC=A'C'(已知),∠ACB=∠A'C'B'(已知),∴△ABC≌△A'B'C'(ASA).4、歸納小結(jié),反思升華本節(jié)課我們討論了在一般三角形中兩邊及其一邊對角對應相等的兩個三角形不一定全等.而當一邊的對角是直角時,這兩個三角形是全等的,從而得出判定直角三角形全等的特殊方法——HL定理,并用此定理安排了一系列具體的、開放性的問題,不僅進一步掌握了推理證明的方法,而且發(fā)展了同學們演繹推理的能力.同學們這一節(jié)課的表現(xiàn),很值得繼續(xù)發(fā)揚廣大.5、布置作業(yè),鞏固提

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論