




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③2.已知,若則實數的取值范圍是()A. B. C. D.3.設函數的導函數,且滿足,若在中,,則()A. B. C. D.4.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數為()A.1 B.2 C.3 D.05.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.6.已知復數,則()A. B. C. D.7.已知復數,(為虛數單位),若為純虛數,則()A. B.2 C. D.8.在中,,,,則邊上的高為()A. B.2 C. D.9.已知定義在上的函數,若函數為偶函數,且對任意,,都有,若,則實數的取值范圍是()A. B. C. D.10.學業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業(yè)水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人11.己知全集為實數集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)12.函數的圖象如圖所示,則它的解析式可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三所學校舉行高三聯考,三所學校參加聯考的人數分別為160,240,400,為調查聯考數學學科的成績,現采用分層抽樣的方法在這三所學校中抽取樣本,若在學校抽取的數學成績的份數為30,則抽取的樣本容量為____________.14.如圖,直線是曲線在處的切線,則________.15.已知數列的前項和為,,且滿足,則數列的前10項的和為______.16.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱的所有棱長均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.18.(12分)已知函數(1)若,求證:(2)若,恒有,求實數的取值范圍.19.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.20.(12分)設函數().(1)討論函數的單調性;(2)若關于x的方程有唯一的實數解,求a的取值范圍.21.(12分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最小?22.(10分)在直角坐標系x0y中,把曲線α為參數)上每個點的橫坐標變?yōu)樵瓉淼谋叮v坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程(1)寫出的普通方程和的直角坐標方程;(2)設點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意,可設直線的方程為,利用韋達定理判斷第一個結論;將代入拋物線的方程可得,,從而,,進而判斷第二個結論;設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結論.【詳解】解:由題意,可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據拋物線的對稱性可知,,兩點關于軸對稱,所以直線軸.所以②正確.如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【點睛】本題主要考查拋物線的定義與幾何性質、直線與拋物線的位置關系等基礎知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查數形結合思想、化歸與轉化思想,屬于難題.2、C【解析】
根據,得到有解,則,得,,得到,再根據,有,即,可化為,根據,則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,3、D【解析】
根據的結構形式,設,求導,則,在上是增函數,再根據在中,,得到,,利用余弦函數的單調性,得到,再利用的單調性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數,在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數與函數的單調性,還考查了運算求解的能力,屬于中檔題.4、C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數.【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.5、D【解析】
根據拋物線的定義,結合,求出的坐標,然后求出的斜率即可.【詳解】解:拋物線的焦點,準線方程為,設,則,故,此時,即.則直線的斜率.故選:D.【點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.6、B【解析】
利用復數除法、加法運算,化簡求得,再求得【詳解】,故.故選:B【點睛】本小題主要考查復數的除法運算、加法運算,考查復數的模,屬于基礎題.7、C【解析】
把代入,利用復數代數形式的除法運算化簡,由實部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數,∴,解得.故選C.【點睛】本題考查復數代數形式的除法運算,考查復數的基本概念,是基礎題.8、C【解析】
結合正弦定理、三角形的內角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點睛】本小題主要考查正弦定理解三角形,考查三角形的內角和定理、兩角和的正弦公式,屬于中檔題.9、A【解析】
根據題意,分析可得函數的圖象關于對稱且在上為減函數,則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因為函數為偶函數,所以函數的圖象關于對稱,因為對任意,,都有,所以函數在上為減函數,則,解得:.即實數的取值范圍是.故選:A.【點睛】本題考查函數的對稱性與單調性的綜合應用,涉及不等式的解法,屬于綜合題.10、D【解析】
根據題意分別計算出物理等級為,化學等級為的學生人數以及物理等級為,化學等級為的學生人數,結合表格中的數據進行分析,可得出合適的選項.【詳解】根據題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變?yōu)椋何锢砘瘜W對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.11、D【解析】
求解一元二次不等式化簡A,求解對數不等式化簡B,然后利用補集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點睛】本題考查了交、并、補集的混合運算,考查了對數不等式,二次不等式的求法,是基礎題.12、B【解析】
根據定義域排除,求出的值,可以排除,考慮排除.【詳解】根據函數圖象得定義域為,所以不合題意;選項,計算,不符合函數圖象;對于選項,與函數圖象不一致;選項符合函數圖象特征.故選:B【點睛】此題考查根據函數圖象選擇合適的解析式,主要利用函數性質分析,常見方法為排除法.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
某層抽取的人數等于該層的總人數乘以抽樣比.【詳解】設抽取的樣本容量為x,由已知,,解得.故答案為:【點睛】本題考查隨機抽樣中的分層抽樣,考查學生基本的運算能力,是一道容易題.14、.【解析】
求出切線的斜率,即可求出結論.【詳解】由圖可知直線過點,可求出直線的斜率,由導數的幾何意義可知,.故答案為:.【點睛】本題考查導數與曲線的切線的幾何意義,屬于基礎題.15、1【解析】
由得時,,兩式作差,可求得數列的通項公式,進一步求出數列的和.【詳解】解:數列的前項和為,,且滿足,①當時,,②①-②得:,整理得:(常數),故數列是以為首項,2為公比的等比數列,所以(首項不符合通項),故,所以:,故答案為:1.【點睛】本題主要考查數列的通項公式的求法及應用,數列的前項和的公式,屬于基礎題.16、等腰三角形【解析】∵∴根據正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)連接交于點,連接,由于平面,得出,根據線線位置關系得出,利用線面垂直的判定和性質得出,結合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據題意,建立空間直角坐標系,利用空間向量法分別求出和平面的法向量,利用空間向量線面角公式,即可求出直線與平面所成角的余弦值.【詳解】解:(Ⅰ)證明:連接交于點,連接,則平面平面,平面,,為的中點,為的中點,平面,,平面,平面,平面平面(Ⅱ)建立如圖所示空間直角坐標系,設則,,,,,設平面的法向量為,則,取得,設直線與平面所成角為,直線與平面所成角的余弦值為.【點睛】本題考查面面垂直的判定以及利用空間向量法求線面角的余弦值,考查空間想象能力和推理能力.18、(1)見解析;(2)(﹣∞,0]【解析】
(1)利用導數求x<0時,f(x)的極大值為,即證(2)等價于k≤,x>0,令g(x)=,x>0,再求函數g(x)的最小值得解.【詳解】(1)∵函數f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)內遞增,在(﹣,0)內遞減,在(0,+∞)內遞增,∴f(x)的極大值為,∴當x<0時,f(x)≤(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,令g(x)=,x>0,則g′(x),令h(x)=x2(1+3x)e3x+2lnx﹣1,則h(x)在(0,+∞)上單調遞增,且x→0+時,h(x)→﹣∞,h(1)=4e3﹣1>0,∴存在x0∈(0,1),使得h(x0)=0,∴當x∈(0,x0)時,g′(x)<0,g(x)單調遞減,當x∈(x0,+∞)時,g′(x)>0,g(x)單調遞增,∴g(x)在(0,+∞)上的最小值是g(x0)=,∵h(x0)=+2lnx0﹣1=0,所以,令,令所以=1,,∴g(x0)∴實數k的取值范圍是(﹣∞,0].【點睛】本題主要考查利用證明不等式,考查利用導數求最值和解答不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平和分析推理能力.19、(1);(2)1.【解析】
(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長的值.【詳解】(1)由題意,在中,因為,由正弦定理,可得sinAsinB=sinBcosA,又因為,可得sinB≠0,所以sinA=cosA,即:tanA=,因為A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長a+b+c=5+7=1.【點睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.20、(1)當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結論;(2)有解,即,令,轉化求函數只有一個實數解,根據(1)中的結論,即可求解.【詳解】(1),當時,恒成立,當時,,綜上,當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當時,在單調遞增,且,函數只有一個零點,原方程只有一個解,當時,由(1)得在出取得極小值,也是最小值,當時,,此時函數只有一個零點,原方程只有一個解,當且遞增區(qū)間時,遞減區(qū)間時;,當,有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.【點睛】本題考查導數的綜合應用,涉及到單調性、零點、極值最值,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中古詩文賞析課教案:古詩文賞析活動設計與成果展示
- 語文課上的一次辯論活動經歷(8篇)
- 教育家精神在教育實踐中的轉化路徑與策略
- 讀書的樂趣與收獲作文5篇范文
- 小學階梯式數學教學模式研究
- 數字技術與產業(yè)結構升級對城市韌性的作用
- 建筑起重機械租賃協(xié)議
- 《運動原理與健身實踐課程教學大綱》
- 學校趣味運動會見聞作文(10篇)
- 九年級數學上冊小專題10解直角三角形的常見類型作業(yè)
- 《污染地塊風險管控與修復工程職業(yè)健康防控指南》
- 2025神華新街能源限責任公司系統(tǒng)內招聘23人(第二批)高頻重點提升(共500題)附帶答案詳解
- 人工智能賦能競技體育數字化轉型的作用機制、應用場景與實現路徑
- 學術出版中AIGC使用邊界指南2.0
- 醫(yī)學教程 膽囊結石的教學查房
- 2024年云南高中學業(yè)水平合格考歷史試卷真題(含答案詳解)
- 《云南省開放口岸》課件
- 三輪礦產資源規(guī)劃匯報
- DB22-T 2786-2017 玄武巖纖維瀝青混合料設計與施工技術規(guī)范
- 產品圖紙識別培訓
- ICU鎮(zhèn)痛鎮(zhèn)靜治療護理
評論
0/150
提交評論