




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、數(shù)學(xué)活動平面鑲嵌名師課件數(shù)學(xué)活動平面鑲嵌名師課件(2)三角形的內(nèi)角和為_,四邊形的內(nèi)角和為_,n邊形的內(nèi)角和_.(1)正三角形的一個內(nèi)角度數(shù)為_,正方形的一個內(nèi)角度數(shù)為_,正五邊形的一個內(nèi)角度數(shù)為_,正六邊形的一個內(nèi)角度數(shù)為_,正八邊形的一個內(nèi)角度數(shù)為 _,正十二邊形的一個內(nèi)角度數(shù)為_.60 90 120 135 150 108 180 360 (n-2)180(2)三角形的內(nèi)角和為_,四邊形的內(nèi)角和為_探究一:探究平面鑲嵌的含義活動1正多邊形的每個內(nèi)角度數(shù)正三角形正六邊形正四邊形正八邊形正五邊形正十二邊形回顧舊知,回憶正多邊形的每個內(nèi)角度數(shù)探究一:探究平面鑲嵌的含義活動1正多邊形的每個內(nèi)角度
2、數(shù)正三角活動2(1) 問題一:回想你家客廳(臥室)里的地磚、地板鋪設(shè)情況,并說說是用什么形狀的地磚、地板鋪成的?整合舊知,探究平面鑲嵌的概念(2) 展示實物:拼圖圖片和生活中瓷磚的圖片探究一:探究平面鑲嵌的含義活動2(1) 問題一:回想你家客廳(臥室)里的地磚、地板鋪設(shè)(3) 問題二:你發(fā)現(xiàn)它們有哪些共同特征? 用地磚鋪地,用瓷磚貼墻,都要求磚與磚嚴(yán)絲合縫,不留空隙,把地面或墻面全部覆蓋. 從數(shù)學(xué)角度去分析,這些工作就是用一些不重疊擺放的多邊形把平面一部分完全覆蓋,通常把這類問題叫做用多邊形覆蓋平面(或平面鑲嵌)的問題. 探究一:探究平面鑲嵌的含義(3) 問題二:你發(fā)現(xiàn)它們有哪些共同特征? 用
3、地磚鋪重點(diǎn)知識探究二:探究一種多邊形單獨(dú)鑲嵌的條件 活動1全班分組活動,拿出課前準(zhǔn)備好的正三角形、正四邊形、正五邊形、正六邊形紙片,進(jìn)行鑲嵌,看哪個小組拼的又快又好,然后展示他們的成果.大膽操作,動手實驗,探究新知識從拼圖中,我們可以得出結(jié)論:正三角形、正四邊形、正六邊形能夠鑲嵌,而正五邊形不能.重點(diǎn)知識探究二:探究一種多邊形單獨(dú)鑲嵌的條件 活動1全班分問題三:為什么正五邊形不能鑲嵌,其它的三種正多邊形可以鑲嵌?這其中有什么規(guī)律?結(jié)合剛才的活動填寫表格,尋找規(guī)律. 活動2名稱每個內(nèi)角的度數(shù)使用正多邊形的個數(shù)在一個頂點(diǎn)處的度數(shù)和能否鑲嵌正三角形正四邊形正五邊形正六邊形集思廣益、小組討論、尋找規(guī)律
4、 探究二:探究一種多邊形單獨(dú)鑲嵌的條件 問題三:為什么正五邊形不能鑲嵌,其它的三種正多邊形可以鑲嵌? 如果一個正多邊形可以進(jìn)行鑲嵌,那么內(nèi)角一定是360的約數(shù)(或360一定是這個多邊形內(nèi)角的整數(shù)倍).名稱每個內(nèi)角的度數(shù)使用正多邊形的個數(shù)在一個頂點(diǎn)處的度數(shù)和能否鑲嵌正三角形606360能正四邊形904360能正五邊形108/不能正六邊形1203360能探究二:探究一種多邊形單獨(dú)鑲嵌的條件 如果一個正多邊形可以進(jìn)行鑲嵌,那么內(nèi)角一定是360的活動3 分析表格可得到:正三角形、正四邊形、正六邊形的內(nèi)角度數(shù)分別是60,90,120,它們都是360的約數(shù),說明在一個頂點(diǎn)處有整數(shù)個這樣的正多邊形鑲嵌;而正
5、五邊形的內(nèi)角為108,108不是360的約數(shù),在一個頂點(diǎn)處沒有整數(shù)個正五邊形鑲嵌成一個平面圖案. 從拼圖中,可得出正三角形、正四邊形、正六邊形能夠鑲嵌,而正五邊形不能.反思過程,小組交流,得出結(jié)論 探究二:探究一種多邊形單獨(dú)鑲嵌的條件 活動3 分析表格可得到:正三角形、正四邊形、正六邊形的內(nèi)角度結(jié)論:在用同一種正多邊形進(jìn)行覆蓋時,關(guān)鍵是看正多邊形的一個內(nèi)角,當(dāng)周角360是一個內(nèi)角的整數(shù)倍時,即一個內(nèi)角的正整數(shù)倍是360時,這種正多邊形可以覆蓋平面,否則不可以.即:如果一個正多邊形可以進(jìn)行鑲嵌,那么內(nèi)角一定是360的約數(shù)(或360一定是這個多邊形內(nèi)角的整數(shù)倍).探究二:探究一種多邊形單獨(dú)鑲嵌的條
6、件 結(jié)論:在用同一種正多邊形進(jìn)行覆蓋時,關(guān)鍵是看正多邊形的一個內(nèi)問題四:任意剪出一些形狀、大小相同的三角形紙板,小組合作拼拼看,它們能否鑲嵌成平面圖案.任意剪出一些形狀、大小相同的四邊形紙板,小組合作拼拼看,它們能否鑲嵌成平面圖案.活動4拓展延伸,探究用一種任意多邊形進(jìn)行平面鑲嵌的條件形狀、大小完全相同的任意三角形可以進(jìn)行鑲嵌.形狀、大小完全相同的任意四邊形可以進(jìn)行鑲嵌.探究二:探究一種多邊形單獨(dú)鑲嵌的條件 問題四:任意剪出一些形狀、大小相同的三角形紙板,小組合作拼拼問題五:用一些形狀、大小相同的多邊形,它們能夠鑲嵌成平面圖案的條件是什么?小組交流.總結(jié):用一些形狀、大小相同的多邊形,它們能夠
7、鑲嵌成平面圖案的條件:對于給定的某種正多邊形,它能否拼成一個平面圖形,而不留一點(diǎn)空隙. 顯然問題的關(guān)鍵在于分析能用于完整鋪平地面的正多邊形的內(nèi)角特點(diǎn). 當(dāng)圍繞一點(diǎn)拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個周角360時,就鋪成一個平面圖形.探究二:探究一種多邊形單獨(dú)鑲嵌的條件 問題五:用一些形狀、大小相同的多邊形,它們能夠鑲嵌成平面圖案重點(diǎn)、難點(diǎn)知識問題六:用剛才的邊長相同的正三角形、正方形、正五邊形、正六邊形中的兩種正多邊形鑲嵌,哪兩種正多邊形能鑲嵌成一個平面圖案?要求:大家先根據(jù)鑲嵌的條件動手算一算,拼一拼,填一填,然后小組活動:哪兩種正多邊形能夠鑲嵌?看誰找得多?探究三:探究用兩種正多
8、邊形平面鑲嵌的條件活動1大膽操作,動手實驗,發(fā)散思維重點(diǎn)、難點(diǎn)知識問題六:用剛才的邊長相同的正三角形、正方形序號方案選擇是否可以鑲嵌每個內(nèi)角的度數(shù)同一個頂點(diǎn)使用個數(shù)1正三角形是603正方形9022正三角形否/正五邊形/3正三角形是602或4正六邊形1202或14正方形否/正五邊形/5正方形否/正六邊形/6正五邊形否/正六邊形/探究三:探究用兩種正多邊形平面鑲嵌的條件序號方案選擇是否可以鑲嵌每個內(nèi)角的度數(shù)同一個頂點(diǎn)使用個數(shù)1正用兩種邊長相等的正多邊形覆蓋平面時的條件是:設(shè)兩種正多邊形的內(nèi)角分別是、,當(dāng)m+n=360中的m,n有正整數(shù)滿足時,這兩種正多邊形可以覆蓋平面.活動2集思廣益 ,規(guī)律總結(jié)探
9、究三:探究用兩種正多邊形平面鑲嵌的條件用兩種邊長相等的正多邊形覆蓋平面時的條件是:活動2集思廣益 知識梳理(1)用一些不重疊擺放的多邊形把平面一部分完全覆蓋,通常把這類問題叫做用多邊形覆蓋平面(或平面鑲嵌)的問題.(2)用同一種正多邊形平面鑲嵌的條件是:當(dāng)正多邊形的一個內(nèi)角的正整數(shù)倍是360時,這種正多邊形可以覆蓋平面.(3)在一般的多邊形中,只有三角形、四邊形可以平面覆蓋,因為三角形和四邊形的內(nèi)角和的正整數(shù)倍是360.(4)用兩種邊長相等的正多邊形覆蓋平面時的條件是:設(shè)兩種正多邊形的內(nèi)角分別是a,當(dāng)ma+n=360中的m,n有正整數(shù)滿足時,這兩種正多邊形可以覆蓋平面.知識梳理(1)用一些不重疊擺放的多邊形把平面一部分完全覆蓋,重難點(diǎn)歸納(1)平面鑲嵌是用一種或幾種平面圖形進(jìn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生豬高熱性疾病治療的注意事項及對策研究
- 致密化不全心肌病超聲診斷規(guī)范
- 蘭山叉車培訓(xùn)資料
- 嬰幼兒護(hù)理的任務(wù)和范圍
- 離婚財產(chǎn)分割詳細(xì)協(xié)議書模板
- 《場投標(biāo)策略制定與中標(biāo)合同變更合同》
- 倉儲貨物安全監(jiān)控承包服務(wù)協(xié)議
- 餐飲行業(yè)員工勞動合同解除賠償標(biāo)準(zhǔn)合同
- 家政擦窗服務(wù)合同范本含清潔工具與設(shè)備租賃條款
- 課程顧問年度工作總結(jié)
- 2025年上海市中考數(shù)學(xué)真題試卷及答案
- 2025貴州省專業(yè)技術(shù)人員繼續(xù)教育公需科目考試題庫(2025公需課課程)
- 網(wǎng)課智慧樹知道《人工智能引論(浙江大學(xué))》章節(jié)測試答案
- 管道工廠化預(yù)制推廣應(yīng)用課件
- 海水的淡化精品課件
- 河流改道施工方案
- 項目工程移交生產(chǎn)驗收報告
- 清華大學(xué)美術(shù)學(xué)院陶瓷藝術(shù)設(shè)計系研究生導(dǎo)師及研究課題
- 計算機(jī)控制實驗報告初稿(共31頁)
- 抗磷脂抗體與抗磷脂綜合征.ppt
- 光伏發(fā)電項目工程質(zhì)量管理方案計劃策劃書
評論
0/150
提交評論