內蒙古呼倫貝爾市名校2022年高考數學二模試卷含解析_第1頁
內蒙古呼倫貝爾市名校2022年高考數學二模試卷含解析_第2頁
內蒙古呼倫貝爾市名校2022年高考數學二模試卷含解析_第3頁
內蒙古呼倫貝爾市名校2022年高考數學二模試卷含解析_第4頁
內蒙古呼倫貝爾市名校2022年高考數學二模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡

2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(,且)在區間上的值域為,則( )ABC或D或42已知是等差數列的前項和,則( )A85BC35D3一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為( ) ABCD4在中,角的對邊分別為,若則角的大小為()ABCD5存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經過點,則橢圓離心率的取值范圍是( )ABCD6將函數圖象上每一點的橫坐標變為原來的2倍,再將圖像向左平移個單位長度,得到函數的圖象,則函數圖象的一個對稱中心為(

3、 )ABCD7過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準線與軸交于,的面積為,則( )ABCD8已知數列對任意的有成立,若,則等于( )ABCD9某個小區住戶共200戶,為調查小區居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區內用水量超過15 m3的住戶的戶數為( )A10B50C60D14010已知正項等比數列滿足,若存在兩項,使得,則的最小值為( ).A16BC5D411直線x-3y+3=0經過橢圓x2a2+y2b2=1ab0的左焦點F,交橢圓于A,B兩點,交y軸于C點,若FC=2CA,則該橢圓的離心率是

4、()A3-1B3-12C22-2D2-112已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則( )AB2CD3二、填空題:本題共4小題,每小題5分,共20分。13已知是函數的極大值點,則的取值范圍是_14已知實數,滿足,則的最大值為_.15已知是偶函數,則的最小值為_.16公比為正數的等比數列的前項和為,若,則的值為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)某企業對設備進行升級改造,現從設備改造前后生產的大量產品中各抽取了100件產品作為樣本,檢測一項質量指標值,該項質量指標值落在區間內的產品視為合格品,否則視

5、為不合格品,如圖是設備改造前樣本的頻率分布直方圖,下表是設備改造后樣本的頻數分布表.圖:設備改造前樣本的頻率分布直方圖表:設備改造后樣本的頻率分布表質量指標值頻數2184814162(1)求圖中實數的值;(2)企業將不合格品全部銷毀后,對合格品進行等級細分,質量指標值落在區間內的定為一等品,每件售價240元;質量指標值落在區間或內的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據表1的數據,用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率.若有一名顧客隨機購買兩件產品支付的費用為(單位:元),求的分布列和數學期望.18

6、(12分)山東省高考改革試點方案規定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數外3門統考科目和物理、化學等六門選考科目構成將每門選考科目的考生原始成績從高到低劃分為、共8個等級參照正態分布原則,確定各等級人數所占比例分別為、選考科目成績計入考生總成績時,將至等級內的考生原始成績,依照等比例轉換法則,分別轉換到、八個分數區間,得到考生的等級成績某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態分布(1)求物理原始成績在區間的人數;(2)按高考改革方案,若從全省考生中隨機抽取3人,記表示這3人中等

7、級成績在區間的人數,求的分布列和數學期望(附:若隨機變量,則,)19(12分)某社區服務中心計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶5元,售價每瓶7元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:攝氏度)有關.如果最高氣溫不低于25,需求量為600瓶;如果最高氣溫位于區間,需求量為500瓶;如果最高氣溫低于20,需求量為300瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:最高氣溫天數414362763以最高氣溫位于各區間的頻率代替最高氣溫位于該區間的概率.(1)求六月份這種酸奶一天的

8、需求量(單位:瓶)的分布列;(2)設六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量為(單位:瓶)時,的數學期望的取值范圍?20(12分)在中,角的對邊分別為,且,(1)求的值;(2)若求的面積21(12分)近年來,隨著“霧霾”天出現的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,在一項對人們霧霾天外出時是否戴口罩的調查中,共調查了人,其中女性人,男性人,并根據統計數據畫出等高條形圖如圖所示:(1)利用圖形判斷性別與霧霾天外出戴口罩是否有關系并說明理由;(2)根據統計數據建立一個列聯表;(3)能否在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩的關系.附:2

9、2(10分)已知數列的各項均為正數,為其前n項和,對于任意的滿足關系式.(1)求數列的通項公式;(2)設數列的通項公式是,前n項和為,求證:對于任意的正數n,總有.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】對a進行分類討論,結合指數函數的單調性及值域求解.【詳解】分析知,.討論:當時,所以,所以;當時,所以,所以.綜上,或,故選C.【點睛】本題主要考查指數函數的值域問題,指數函數的值域一般是利用單調性求解,側重考查數學運算和數學抽象的核心素養.2B【解析】將已知條件轉化為的形式,求得,由此求得.【詳解】設公差為,則

10、,所以,.故選:B【點睛】本小題主要考查等差數列通項公式的基本量計算,考查等差數列前項和的計算,屬于基礎題.3C【解析】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:【點睛】本題考查的知識點是由三視圖求幾何體的體積,解決本題的關鍵是得到該幾何體的形狀4A【解析】由正弦定理化簡已知等式可得,結合,可得,結合范圍,可得,可得,即可得解的值【詳解】解:,由正弦定理可得:,故選A【點睛】本題主要考查了正弦定理在解三角形中的應用,考查了計算能力和轉化思想

11、,屬于基礎題5D【解析】根據題意利用垂直直線斜率間的關系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎題.6D【解析】根據函數圖象的變換規律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變為原來的2倍,得到再將圖像向左平移個單位長度,得到函數的圖象,故選:D【點睛】考查三角函數圖象的變換規律以及其有關性質,基礎題.7B【解析】設點、,并設直線的方程為,由得,將直線的方程代入韋達定理,求得,結合的面積求得的值,結合焦點弦長公式可求得.【詳解

12、】設點、,并設直線的方程為,將直線的方程與拋物線方程聯立,消去得,由韋達定理得,可得,拋物線的準線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關鍵,考查計算能力,屬于中等題.8B【解析】觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有, ,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數列中的方法,并能熟練運用對應方法求解.9C【解析】從頻率分布直方圖可知,用水量超過15m的住戶的頻率為,即分

13、層抽樣的50戶中有0.350=15戶住戶的用水量超過15立方米所以小區內用水量超過15立方米的住戶戶數為,故選C10D【解析】由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設等比數列公比為,由已知,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數列的知識,是一道中檔題.11A【解析】由直線x-3y+3=0過橢圓的左焦點F,得到左焦點為F(-3,0),且a2-b2=3,再由FC=2CA,求得A32,32,代入橢圓的方程,求得a2=33+62,進而利用橢圓的離心率的計算公式,即可求解

14、.【詳解】由題意,直線x-3y+3=0經過橢圓的左焦點F,令y=0,解得x=3,所以c=3,即橢圓的左焦點為F(-3,0),且a2-b2=3 直線交y軸于C(0,1),所以,OF=3,OC=1,FC=2,因為FC=2CA,所以FA=3,所以A32,32,又由點A在橢圓上,得3a2+9b2=4 由,可得4a2-24a2+9=0,解得a2=33+62,所以e2=c2a2=633+6=4-23=3-12,所以橢圓的離心率為e=3-1.故選A.【點睛】本題考查了橢圓的幾何性質離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:求出a,c ,代入公式e=ca;只需要根據一個條件得到關于a,b,c

15、的齊次式,轉化為a,c的齊次式,然后轉化為關于e的方程,即可得e的值(范圍)12B【解析】過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質可構造方程求得,進而求得結果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,由拋物線定義知:,.由拋物線性質得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質的應用,關鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.二、填空題:本題共4小題,每小題5分,共20分。13【解析】方法一:令,則,當,時,單調遞減,時,且,在上單調遞增,時,且,在上單調遞減,是函數的極大值點,滿足題意;當時,存

16、在使得,即,又在上單調遞減,時,所以,這與是函數的極大值點矛盾綜上,方法二:依據極值的定義,要使是函數的極大值點,由知須在的左側附近,即;在的右側附近,即易知,時,與相切于原點,所以根據與的圖象關系,可得14【解析】畫出不等式組表示的平面區域,將目標函數理解為點與構成直線的斜率,數形結合即可求得.【詳解】不等式組表示的平面區域如下所示:因為可以理解為點與構成直線的斜率,數形結合可知,當且僅當目標函數過點時,斜率取得最大值,故的最大值為.故答案為:.【點睛】本題考查目標函數為斜率型的規劃問題,屬基礎題.152【解析】由偶函數性質可得,解得,再結合基本不等式即可求解【詳解】令得,所以,當且僅當時取

17、等號.故答案為:2【點睛】考查函數的奇偶性、基本不等式,屬于基礎題1656【解析】根據已知條件求等比數列的首項和公比,再代入等比數列的通項公式,即可得到答案.【詳解】,.故答案為:.【點睛】本題考查等比數列的通項公式和前項和公式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)(2)詳見解析【解析】(1)由頻率分布直方圖中所有頻率(小矩形面積)之和為1可計算出值;(2)由頻數分布表知一等品、二等品、三等品的概率分別為.,選2件產品,支付的費用的所有取值為240,300,360,420,480,由相互獨立

18、事件的概率公式分別計算出概率,得概率分布列,由公式計算出期望【詳解】解:(1)據題意,得所以(2)據表1分析知,從所有產品中隨機抽一件是一等品、二等品、三等品的概率分別為.隨機變量的所有取值為240,300,360,420,480.隨機變量的分布列為240300360420480所以(元)【點睛】本題考查頻率分布直方圖,頻數分布表,考查隨機變量的概率分布列和數學期望,解題時掌握性質:頻率分布直方圖中所有頻率和為1本題考查學生的數據處理能力,屬于中檔題18()1636人;()見解析【解析】()根據正態曲線的對稱性,可將區間分為和兩種情況,然后根據特殊區間上的概率求出成績在區間內的概率,進而可求出

19、相應的人數;()由題意得成績在區間61,80的概率為,且,由此可得的分布列和數學期望【詳解】()因為物理原始成績,所以所以物理原始成績在(47,86)的人數為(人)()由題意得,隨機抽取1人,其成績在區間61,80內的概率為所以隨機抽取三人,則的所有可能取值為0,1,2,3,且,所以 , 所以的分布列為0123所以數學期望【點睛】(1)解答第一問的關鍵是利用正態分布的三個特殊區間表示所求概率的區間,再根據特殊區間上的概率求解,解題時注意結合正態曲線的對稱性(2)解答第二問的關鍵是判斷出隨機變量服從二項分布,然后可得分布列及其數學期望當被抽取的總體的容量較大時,抽樣可認為是等可能的,進而可得隨機變量服從二項分布19(1)見解析;(2)【解析】(1)X的可能取值為300,500,600,結合題意及表格數據計算對應概率,即得解;(2)由題意得,分,及,分別得到y與n的函數關系式,得到對應的分布列,分析即得解.【詳解】(1)由題意:X的可能取值為300,500,600 故:六月份這種酸奶一天的需求量(單位:瓶)的分布列為300500600(2)由題意得.1.當時,利潤此時利潤的分布列為.2.時,利潤此時利潤的分布列為.綜上的數學期望的取值范圍是.【點睛】本題考查了函數與概率統計綜合,考查了學生綜合分析,數據處理,轉化劃歸,數學

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論