東北育才雙語學校2022年高三最后一卷數學試卷含解析_第1頁
東北育才雙語學校2022年高三最后一卷數學試卷含解析_第2頁
東北育才雙語學校2022年高三最后一卷數學試卷含解析_第3頁
東北育才雙語學校2022年高三最后一卷數學試卷含解析_第4頁
東北育才雙語學校2022年高三最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數學模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為( )A2BCD32已知函數,則( )

2、ABCD3執行如圖所示的程序框圖,輸出的結果為( )AB4CD4已知m,n為異面直線,m平面,n平面,直線l滿足l m,l n,則( )A且B且C與相交,且交線垂直于D與相交,且交線平行于5若復數滿足,則( )ABCD6若向量,則與共線的向量可以是()ABCD7已知全集,函數的定義域為,集合,則下列結論正確的是ABCD8復數滿足,則( )ABCD9已知函數,則不等式的解集為( )ABCD10空氣質量指數是反映空氣狀況的指數,指數值趨小,表明空氣質量越好,下圖是某市10月1日-20日指數變化趨勢,下列敘述錯誤的是( )A這20天中指數值的中位數略高于100B這20天中的中度污染及以上(指數)的天

3、數占C該市10月的前半個月的空氣質量越來越好D總體來說,該市10月上旬的空氣質量比中旬的空氣質量好11是定義在上的增函數,且滿足:的導函數存在,且,則下列不等式成立的是( )ABCD12已知為等差數列,若,則( )A1B2C3D6二、填空題:本題共4小題,每小題5分,共20分。13如圖是一個幾何體的三視圖,若它的體積是,則_ ,該幾何體的表面積為 _14小李參加有關“學習強國”的答題活動,要從4道題中隨機抽取2道作答,小李會其中的三道題,則抽到的2道題小李都會的概率為_.15在面積為的中,若點是的中點,點滿足,則的最大值是_.16記為數列的前項和,若,則_.三、解答題:共70分。解答應寫出文字

4、說明、證明過程或演算步驟。17(12分)超級病菌是一種耐藥性細菌,產生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現象不斷的發生,很多致病菌也對相應的抗生素產生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗n次;(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,

5、如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數總共為次,假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p().(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;(2)現取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為,采用混合檢驗方式,樣本需要檢驗的總次數為.(i)試運用概率統計的知識,若,試求p關于k的函數關系式;(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總

6、次數期望值更少,求k的最大值.參考數據:,18(12分)已知向量,函數(1)求函數的最小正周期及單調遞增區間;(2)在中,三內角的對邊分別為,已知函數的圖像經過點,成等差數列,且,求a的值19(12分)已知函數(1)當時,解關于x的不等式;(2)當時,若對任意實數,都成立,求實數的取值范圍20(12分)在直角坐標系中,曲線的參數方程為(為參數),為上的動點,點滿足,點的軌跡為曲線.()求的方程;()在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.21(12分)已知函數.(1)解不等式;(2)若,求證:.22(10分)已知橢圓:的離心率為,右焦點為拋

7、物線的焦點.(1)求橢圓的標準方程;(2)為坐標原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值. 詳解:由得到,故無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度

8、轉化為到準線或焦點的距離來求解.2A【解析】根據分段函數解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點睛】本小題主要考查根據分段函數解析式求函數值,屬于基礎題.3A【解析】模擬執行程序框圖,依次寫出每次循環得到的的值,當,退出循環,輸出結果.【詳解】程序運行過程如下:,;,;,;,;,;,;,退出循環,輸出結果為,故選:A.【點睛】該題考查的是有關程序框圖的問題,涉及到的知識點有判斷程序框圖輸出結果,屬于基礎題目.4D【解析】試題分析:由平面,直線滿足,且,所以,又平面,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D考點

9、:平面與平面的位置關系,平面的基本性質及其推論5C【解析】化簡得到,再計算復數模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復數的化簡,共軛復數,復數模,意在考查學生的計算能力.6B【解析】先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.7A【解析】求函數定義域得集合M,N后,再判斷【詳解】由題意,故選A【點睛】本題考查集合的運算,解題關鍵是確定集合中的元素確定集合的元素時要注意代表元形式,集合是函數的定義域,還是函數的值域,是不等

10、式的解集還是曲線上的點集,都由代表元決定8C【解析】利用復數模與除法運算即可得到結果.【詳解】解: ,故選:C【點睛】本題考查復數除法運算,考查復數的模,考查計算能力,屬于基礎題.9D【解析】先判斷函數的奇偶性和單調性,得到,且,解不等式得解.【詳解】由題得函數的定義域為.因為,所以為上的偶函數,因為函數都是在上單調遞減.所以函數在上單調遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數的奇偶性和單調性的判斷,考查函數的奇偶性和單調性的應用,意在考查學生對這些知識的理解掌握水平.10C【解析】結合題意,根據題目中的天的指數值,判斷選項中的命題是否正確.【詳解】對于,由圖可知天的指數值

11、中有個低于,個高于,其中第個接近,第個高于,所以中位數略高于,故正確.對于,由圖可知天的指數值中高于的天數為,即占總天數的,故正確.對于,由圖可知該市月的前天的空氣質量越來越好,從第天到第天空氣質量越來越差,故錯誤.對于,由圖可知該市月上旬大部分指數在以下,中旬大部分指數在以上,所以該市月上旬的空氣質量比中旬的空氣質量好,故正確.故選:【點睛】本題考查了對折線圖數據的分析,讀懂題意是解題關鍵,并能運用所學知識對命題進行判斷,本題較為基礎.11D【解析】根據是定義在上的增函數及有意義可得,構建新函數,利用導數可得為上的增函數,從而可得正確的選項.【詳解】因為是定義在上的增函數,故.又有意義,故,

12、故,所以.令,則,故在上為增函數,所以即,整理得到.故選:D.【點睛】本題考查導數在函數單調性中的應用,一般地,數的大小比較,可根據數的特點和題設中給出的原函數與導數的關系構建新函數,本題屬于中檔題.12B【解析】利用等差數列的通項公式列出方程組,求出首項和公差,由此能求出【詳解】an為等差數列,,,解得10,d3,+4d10+111故選:B【點睛】本題考查等差數列通項公式求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題二、填空題:本題共4小題,每小題5分,共20分。13;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,所以體積是,解得,四個側面都

13、是直角三角形,所以計算出邊長,表面積是考點:1三視圖;2幾何體的表面積14【解析】從四道題中隨機抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故答案為:【點睛】此題考查根據古典概型求概率,關鍵在于根據題意準確求出基本事件的總數和某一事件包含的基本事件個數.15【解析】由任意三角形面積公式與構建關系表示|AB|AC|,再由已知與平面向量的線性運算、平面向量數量積的運算轉化,最后由重要不等式求得最值.【詳解】由ABC的面積為得|AB|AC|sinBAC=,所以

14、|AB|AC|sinBAC=,又,即|AB|AC|cosBAC=,由與的平方和得:|AB|AC|=,又點M是AB的中點,點N滿足,所以,當且僅當時,取等號,即的最大值是為.故答案為:【點睛】本題考查平面向量中由線性運算表示未知向量,進而由重要不等式求最值,屬于中檔題.16-254【解析】利用代入即可得到,即是等比數列,再利用等比數列的通項公式計算即可.【詳解】由已知,得,即,所以又,即,所以是以-4為首項,2為公比的等比數列,所以,即,所以。故答案為:【點睛】本題考查已知與的關系求,考查學生的數學運算求解能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1

15、)(2)(i)(,且).(ii)最大值為4.【解析】(1)設恰好經過2次檢驗能把陽性樣本全部檢驗出來為事件A,利用古典概型、排列組合求解即可;(2)(i)由已知得,的所有可能取值為1,則可求得,即可得到,進而由可得到p關于k的函數關系式;(ii)由可得,推導出,設(),利用導函數判斷的單調性,由單調性可求出的最大值【詳解】(1)設恰好經過2次檢驗能把陽性樣本全部檢驗出來為事件A,則,恰好經過兩次檢驗就能把陽性樣本全部檢驗出來的概率為(2)(i)由已知得,的所有可能取值為1,若,則,則,p關于k的函數關系式為(,且)(ii)由題意知,得,設(),則,令,則,當時,即在上單調增減,又,又,k的最大

16、值為4【點睛】本題考查古典概型的概率公式的應用,考查隨機變量及其分布,考查利用導函數判斷函數的單調性18(1),(2)【解析】(1)利用向量的數量積和二倍角公式化簡得,故可求其周期與單調性;(2)根據圖像過得到,故可求得的大小,再根據數量積得到的乘積,最后結合余弦定理和構建關于的方程即可【詳解】(1),最小正周期:,由得,所以的單調遞增區間為;(2)由可得:,所以又因為成等差數列,所以而,19(1)(2)【解析】(1)當時,利用含有一個絕對值不等式的解法,求得不等式的解集.(2)對分成和兩類,利用零點分段法去絕對值,將表示為分段函數的形式,求得的最小值,進而求得的取值范圍.【詳解】(1)當時,

17、由得由得解:,得當時,關于的不等式的解集為(2)當時,所以在上是減函數,在是增函數,所以,由題設得,解得.當時,同理求得.綜上所述,的取值范圍為.【點睛】本小題主要考查含有一個絕對值不等式的求法,考查利用零點分段法解含有兩個絕對值的不等式,屬于中檔題.20()(為參數);()【解析】()設點,則,代入化簡得到答案.()分別計算,的極坐標方程為,取代入計算得到答案.【詳解】()設點,故,故的參數方程為:(為參數).(),故,極坐標方程為:;,故,極坐標方程為:.,故,故.【點睛】本題考查了參數方程,極坐標方程,弦長,意在考查學生的計算能力和轉化能力.21(1);(2)證明見解析.【解析】(1)分、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號即可,由此證明出所證不等式成立.【詳解】(1).當時,由,解得,此時;當時,不成立;當時,由,解得,此時.綜上所述,不等式的解集為;(2)要證,即證,因為,所以,.所以,.故所證不等式成立.【點睛】本題考查絕對值不等式的求解,同時也考查了利用分析法和作差法證明不等式,考查分類討論思想以及推理能力,屬于中等題.22(1);(2)見解析【解析】(1)由條件可得,再根據離心率可求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論