




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第三章 二維隨機(jī)變量及其分布(1)聯(lián)合分布離散型如果二維隨機(jī)向量(X,Y)的所有可能取值為至多可列個(gè)有序?qū)Γ▁,y),則稱為離散型隨機(jī)量。設(shè)=(X,Y)的所有可能取值為,且事件=的概率為pij,稱為=(X,Y)的分布律或稱為X和Y的聯(lián)合分布律。聯(lián)合分布有時(shí)也用下面的概率分布表來表示: YXy1y2yjx1p11p12p1jx2p21p22p2jxipi1這里pij具有下面兩個(gè)性質(zhì):(1)pij0(i,j=1,2,);(2)連續(xù)型對(duì)于二維隨機(jī)向量,如果存在非負(fù)函數(shù),使對(duì)任意一個(gè)其鄰邊分別平行于坐標(biāo)軸的矩形區(qū)域D,即D=(X,Y)|a<x<b,c<y<d有則稱為連續(xù)型隨機(jī)向
2、量;并稱f(x,y)為=(X,Y)的分布密度或稱為X和Y的聯(lián)合分布密度。分布密度f(x,y)具有下面兩個(gè)性質(zhì):(1) f(x,y)0;(2) (2)二維隨機(jī)變量的本質(zhì)(3)聯(lián)合分布函數(shù)設(shè)(X,Y)為二維隨機(jī)變量,對(duì)于任意實(shí)數(shù)x,y,二元函數(shù)稱為二維隨機(jī)向量(X,Y)的分布函數(shù),或稱為隨機(jī)變量X和Y的聯(lián)合分布函數(shù)。分布函數(shù)是一個(gè)以全平面為其定義域,以事件的概率為函數(shù)值的一個(gè)實(shí)值函數(shù)。分布函數(shù)F(x,y)具有以下的基本性質(zhì):(1)(2)F(x,y)分別對(duì)x和y是非減的,即當(dāng)x2>x1時(shí),有F(x2,y)F(x1,y);當(dāng)y2>y1時(shí),有F(x,y2) F(x,y1);(3)F(x,y)
3、分別對(duì)x和y是右連續(xù)的,即(4)(5)對(duì)于.(4)離散型與連續(xù)型的關(guān)系(5)邊緣分布離散型X的邊緣分布為;Y的邊緣分布為。連續(xù)型X的邊緣分布密度為Y的邊緣分布密度為(6)條件分布離散型在已知X=xi的條件下,Y取值的條件分布為在已知Y=yj的條件下,X取值的條件分布為連續(xù)型在已知Y=y的條件下,X的條件分布密度為;在已知X=x的條件下,Y的條件分布密度為(7)獨(dú)立性一般型F(X,Y)=FX(x)FY(y)離散型有零不獨(dú)立連續(xù)型f(x,y)=fX(x)fY(y)直接判斷,充要條件:可分離變量正概率密度區(qū)間為矩形二維正態(tài)分布0隨機(jī)變量的函數(shù)若X1,X2,Xm,Xm+1,Xn相互獨(dú)立, h,g為連續(xù)
4、函數(shù),則:h(X1,X2,Xm)和g(Xm+1,Xn)相互獨(dú)立。特例:若X與Y獨(dú)立,則:h(X)和g(Y)獨(dú)立。例如:若X與Y獨(dú)立,則:3X+1和5Y-2獨(dú)立。(8)二維均勻分布設(shè)隨機(jī)向量(X,Y)的分布密度函數(shù)為其中SD為區(qū)域D的面積,則稱(X,Y)服從D上的均勻分布,記為(X,Y)U(D)。例如圖3.1、圖3.2和圖3.3。y1 D1O 1 x圖3.1yD211 O 2 x圖3.2yD3dcO a b x圖3.3(9)二維正態(tài)分布設(shè)隨機(jī)向量(X,Y)的分布密度函數(shù)為其中是5個(gè)參數(shù),則稱(X,Y)服從二維正態(tài)分布,記為(X,Y)N(由邊緣密度的計(jì)算公式,可以推出二維正態(tài)分布的兩個(gè)邊緣分布仍為
5、正態(tài)分布,即XN(但是若XN(,(X,Y)未必是二維正態(tài)分布。(10)函數(shù)分布Z=X+Y根據(jù)定義計(jì)算:對(duì)于連續(xù)型,fZ(z)兩個(gè)獨(dú)立的正態(tài)分布的和仍為正態(tài)分布()。n個(gè)相互獨(dú)立的正態(tài)分布的線性組合,仍服從正態(tài)分布。, Z=max,min(X1,X2,Xn)若相互獨(dú)立,其分布函數(shù)分別為,則Z=max,min(X1,X2,Xn)的分布函數(shù)為:分布設(shè)n個(gè)隨機(jī)變量相互獨(dú)立,且服從標(biāo)準(zhǔn)正態(tài)分布,可以證明它們的平方和的分布密度為我們稱隨機(jī)變量W服從自由度為n的分布,記為W,其中所謂自由度是指獨(dú)立正態(tài)隨機(jī)變量的個(gè)數(shù),它是隨機(jī)變量分布中的一個(gè)重要參數(shù)。分布滿足可加性:設(shè)則t分布設(shè)X,Y是兩個(gè)相互獨(dú)立的隨機(jī)變量,且可以證明函數(shù)的概率密度為我們稱隨機(jī)變量T服從自由度為n的t分布
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)數(shù)顯量具產(chǎn)銷需求分析及投資發(fā)展前景預(yù)測(cè)研究報(bào)告
- 湖北省襄陽三中2025年高考英語二模試卷含解析
- 職業(yè)技術(shù)學(xué)院2024級(jí)計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)專業(yè)人才培養(yǎng)方案
- 廣東省廣州市2025屆高三下學(xué)期綜合測(cè)試(二)(二模)數(shù)學(xué)試題 含解析
- 上海市金山區(qū)2024-2025學(xué)年八年級(jí)下學(xué)期中化學(xué)試題(原卷版+解析版)
- 生態(tài)環(huán)境監(jiān)測(cè)中的遙感與GIS技術(shù)考核試卷
- 電氣安裝石油與開采設(shè)備考核試卷
- 管道配件生產(chǎn)的自動(dòng)化技術(shù)考核試卷
- 船舶改裝施工過程中的質(zhì)量安全管理協(xié)同考核試卷
- 納米材料在海水淡化處理中的應(yīng)用考核試卷
- 【9數(shù)一模】2025年安徽合肥市第四十五中學(xué)九年級(jí)中考一模數(shù)學(xué)試卷(含答案)
- 電網(wǎng)工程設(shè)備材料信息參考價(jià)(2024年第四季度)
- 2024年浙江省中考社會(huì)試卷真題(含標(biāo)準(zhǔn)答案及評(píng)分標(biāo)準(zhǔn))
- 國(guó)開2024年秋《生產(chǎn)與運(yùn)作管理》形成性考核1-4答案
- 醫(yī)療機(jī)構(gòu)消毒技術(shù)規(guī)范(2023年版)
- 大客戶營(yíng)銷技巧ppt課件
- C++優(yōu)秀課件PPT
- 團(tuán)險(xiǎn)新產(chǎn)品契約及核保細(xì)則
- 定向鉆(拉管)施工方案
- 柴油發(fā)電機(jī)安裝單元評(píng)定表
- 鐵板神數(shù)的推算過程及重要秘?cái)?shù) 六
評(píng)論
0/150
提交評(píng)論