人教版高中數學 必修一 第一章 知識點.doc_第1頁
人教版高中數學 必修一 第一章 知識點.doc_第2頁
人教版高中數學 必修一 第一章 知識點.doc_第3頁
人教版高中數學 必修一 第一章 知識點.doc_第4頁
人教版高中數學 必修一 第一章 知識點.doc_第5頁
已閱讀5頁,還剩2頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第一章 集合與函數概念1.1集合【1.1.1】集合的含義與表示 (1)集合的概念 集合中的元素具有確定性、互異性和無序性.(2)常用數集及其記法表示自然數集,或表示正整數集,表示整數集,表示有理數集,表示實數集.(3)集合與元素間的關系對象與集合的關系是,或者,兩者必居其一.(4)集合的表示法 自然語言法:用文字敘述的形式來描述集合.列舉法:把集合中的元素一一列舉出來,寫在大括號內表示集合.描述法:|具有的性質,其中為集合的代表元素.圖示法:用數軸或韋恩圖來表示集合.(5)集合的分類含有有限個元素的集合叫做有限集.含有無限個元素的集合叫做無限集.不含有任何元素的集合叫做空集().【1.1.2】集合間的基本關系(6)子集、真子集、集合相等名稱記號意義性質示意圖子集(或A中的任一元素都屬于B(1)AA(2)(3)若且,則(4)若且,則或真子集AB(或BA),且B中至少有一元素不屬于A(1)(A為非空子集)(2)若且,則集合相等A中的任一元素都屬于B,B中的任一元素都屬于A(1)AB(2)BA(7)已知集合有個元素,則它有個子集,它有個真子集,它有個非空子集,它有非空真子集.(8)交集、并集、補集【1.1.3】集合的基本運算名稱記號意義性質示意圖交集且(1)(2)(3) 并集或(1)(2)(3) 補集1 2 【補充知識】含絕對值的不等式與一元二次不等式的解法(1)含絕對值的不等式的解法不等式解集或把看成一個整體,化成,型不等式來求解(2)一元二次不等式的解法判別式二次函數的圖象一元二次方程的根(其中無實根的解集或的解集1.2函數及其表示【1.2.1】函數的概念(1)函數的概念設、是兩個非空的數集,如果按照某種對應法則,對于集合中任何一個數,在集合中都有唯一確定的數和它對應,那么這樣的對應(包括集合,以及到的對應法則)叫做集合到的一個函數,記作函數的三要素:定義域、值域和對應法則只有定義域相同,且對應法則也相同的兩個函數才是同一函數(2)區間的概念及表示法設是兩個實數,且,滿足的實數的集合叫做閉區間,記做;滿足的實數的集合叫做開區間,記做;滿足,或的實數的集合叫做半開半閉區間,分別記做,;滿足的實數的集合分別記做注意:對于集合與區間,前者可以大于或等于,而后者必須(3)求函數的定義域時,一般遵循以下原則:是整式時,定義域是全體實數是分式函數時,定義域是使分母不為零的一切實數是偶次根式時,定義域是使被開方式為非負值時的實數的集合對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1中,零(負)指數冪的底數不能為零若是由有限個基本初等函數的四則運算而合成的函數時,則其定義域一般是各基本初等函數的定義域的交集對于求復合函數定義域問題,一般步驟是:若已知的定義域為,其復合函數的定義域應由不等式解出對于含字母參數的函數,求其定義域,根據問題具體情況需對字母參數進行分類討論由實際問題確定的函數,其定義域除使函數有意義外,還要符合問題的實際意義(4)求函數的值域或最值求函數最值的常用方法和求函數值域的方法基本上是相同的事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值因此求函數的最值與值域,其實質是相同的,只是提問的角度不同求函數值域與最值的常用方法: 觀察法:對于比較簡單的函數,我們可以通過觀察直接得到值域或最值配方法:將函數解析式化成含有自變量的平方式與常數的和,然后根據變量的取值范圍確定函數的值域或最值判別式法:若函數可以化成一個系數含有的關于的二次方程,則在時,由于為實數,故必須有,從而確定函數的值域或最值不等式法:利用基本不等式確定函數的值域或最值換元法:通過變量代換達到化繁為簡、化難為易的目的,三角代換可將代數函數的最值問題轉化為三角函數的最值問題反函數法:利用函數和它的反函數的定義域與值域的互逆關系確定函數的值域或最值數形結合法:利用函數圖象或幾何方法確定函數的值域或最值函數的單調性法【1.2.2】函數的表示法(5)函數的表示方法表示函數的方法,常用的有解析法、列表法、圖象法三種 解析法:就是用數學表達式表示兩個變量之間的對應關系列表法:就是列出表格來表示兩個變量之間的對應關系圖象法:就是用圖象表示兩個變量之間的對應關系(6)映射的概念設、是兩個集合,如果按照某種對應法則,對于集合中任何一個元素,在集合中都有唯一的元素和它對應,那么這樣的對應(包括集合,以及到的對應法則)叫做集合到的映射,記作給定一個集合到集合的映射,且如果元素和元素對應,那么我們把元素叫做元素的象,元素叫做元素的原象1.3函數的基本性質【1.3.1】單調性與最大(小)值(1)函數的單調性定義及判定方法函數的性 質定義圖象判定方法函數的單調性如果對于屬于定義域I內某個區間上的任意兩個自變量的值x1、x2,當x1 x2時,都有f(x1)f(x2),那么就說f(x)在這個區間上是增函數(1)利用定義(2)利用已知函數的單調性(3)利用函數圖象(在某個區間圖 象上升為增)(4)利用復合函數如果對于屬于定義域I內某個區間上的任意兩個自變量的值x1、x2,當x1f(x2),那么就說f(x)在這個區間上是減函數(1)利用定義(2)利用已知函數的單調性(3)利用函數圖象(在某個區間圖象下降為減)(4)利用復合函數在公共定義域內,兩個增函數的和是增函數,兩個減函數的和是減函數,增函數減去一個減函數為增函數,減函數減去一個增函數為減函數yxo對于復合函數,令,若為增,為增,則為增;若為減,為減,則為增;若為增,為減,則為減;若為減,為增,則為減(2)打“”函數的圖象與性質分別在、上為增函數,分別在、上為減函數(3)最大(小)值定義 一般地,設函數的定義域為,如果存在實數滿足:(1)對于任意的,都有; (2)存在,使得那么,我們稱是函數 的最大值,記作一般地,設函數的定義域為,如果存在實數滿足:(1)對于任意的,都有;(2)存在,使得那么,我們稱是函數的最小值,記作【1.3.2】奇偶性(4)函數的奇偶性定義及判定方法函數的性 質定義圖象判定方法函數的奇偶性如果對于函數f(x)定義域內任意一個x,都有f(x)=f(x),那么函數f(x)叫做奇函數(1)利用定義(要先判斷定義域是否關于原點對稱)(2)利用圖象(圖象關于原點對稱)如果對于函數f(x)定義域內任意一個x,都有f(x)=f(x),那么函數f(x)叫做偶函數(1)利用定義(要先判斷定義域是否關于原點對稱)(2)利用圖象(圖象關于y軸對稱)若函數為奇函數,且在處有定義,則奇函數在軸兩側相對稱的區間增減性相同,偶函數在軸兩側相對稱的區間增減性相反在公共定義域內,兩個偶函數(或奇函數)的和(或差)仍是偶函數(或奇函數),兩個偶函數(或奇函數)的積(或商)是偶函數,一個偶函數與一個奇函數的積(或商)是奇函數補充知識函數的圖象(1)作圖利用描點法作圖:確定函數的定義域; 化解函數解析式;討論函數的性質(奇偶性、單調性); 畫出函數的圖象利用基本函數圖象的變換作圖:要準確記憶一次函數、二次函數、反比例函數、指數函數、對數函數、冪函數、三角函數等各種基本初等函數的圖象平移變換伸縮變換 對稱變換

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論