




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省舟山市2025年高考全國卷信息歸集與高考命題預(yù)測-數(shù)學試題卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.2.已知橢圓,直線與直線相交于點,且點在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.3.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.《九章算術(shù)》是我國古代數(shù)學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機取一點,則此點取自內(nèi)切圓的概率是()A. B. C. D.5.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.6.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個大于2的偶數(shù)都可以表示為兩個素數(shù)的和,例如:,,,那么在不超過18的素數(shù)中隨機選取兩個不同的數(shù),其和等于16的概率為()A. B. C. D.7.已知集合,則元素個數(shù)為()A.1 B.2 C.3 D.48.若實數(shù)x,y滿足條件,目標函數(shù),則z的最大值為()A. B.1 C.2 D.09.已知等差數(shù)列的前13項和為52,則()A.256 B.-256 C.32 D.-3210.設(shè),則()A. B. C. D.11.若集合,則()A. B.C. D.12.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在矩形中,為邊的中點,,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積為.14.對任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.15.若,則________.16.已知實數(shù)滿足,則的最小值是______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在綜合素質(zhì)評價的某個維度的測評中,依據(jù)評分細則,學生之間相互打分,最終將所有的數(shù)據(jù)合成一個分數(shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學生的在該維度的測評結(jié)果,在畢業(yè)班中隨機抽出一個班的數(shù)據(jù).該班共有60名學生,得到如下的列聯(lián)表:優(yōu)秀合格總計男生6女生18合計60已知在該班隨機抽取1人測評結(jié)果為優(yōu)秀的概率為.(1)完成上面的列聯(lián)表;(2)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結(jié)果有關(guān)系?(3)現(xiàn)在如果想了解全校學生在該維度的表現(xiàn)情況,采取簡單隨機抽樣方式在全校學生中抽取少數(shù)一部分來分析,請你選擇一個合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.02418.(12分)已知橢圓:的左、右焦點分別為,,焦距為2,且經(jīng)過點,斜率為的直線經(jīng)過點,與橢圓交于,兩點.(1)求橢圓的方程;(2)在軸上是否存在點,使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.19.(12分)已知在ΔABC中,角A,B,C的對邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin20.(12分)甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數(shù)記為.(1)求的分布列及數(shù)學期望;(2)在概率(=0,1,2,3)中,若的值最大,求實數(shù)的取值范圍.21.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.22.(10分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(-,0)、F2(,0).點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.(1)求橢圓C的方程;(2)已知點N的坐標為(3,2),點P的坐標為(m,n)(m≠3).過點M任作直線l與橢圓C相交于A、B兩點,設(shè)直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關(guān)系式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點睛:應(yīng)用幾何概型求概率的方法建立相應(yīng)的幾何概型,將試驗構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個連續(xù)變量可建立與長度有關(guān)的幾何概型,只需把這個變量放在數(shù)軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序?qū)崝?shù)對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關(guān)的幾何概型;(3)若一個隨機事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標系即可建立與體積有關(guān)的幾何概型.2.A【解析】
先求得橢圓焦點坐標,判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡后求得離心率的取值范圍.【詳解】設(shè)是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點睛】本小題主要考查直線與直線的位置關(guān)系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.3.A【解析】
設(shè)成立;反之,滿足,但,故選A.4.C【解析】
利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應(yīng)用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運算能力.5.B【解析】
由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質(zhì):或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數(shù).6.B【解析】
先求出從不超過18的素數(shù)中隨機選取兩個不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過18的素數(shù)有2,3,5,7,11,13,17共7個,從中隨機選取兩個不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題不可以列舉出所有事件但可以用分步計數(shù)得到,屬于基礎(chǔ)題.7.B【解析】
作出兩集合所表示的點的圖象,可得選項.【詳解】由題意得,集合A表示以原點為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點,作出兩集合所表示的點的示意圖如下圖所示,得出兩個圖象有兩個交點:點A和點B,所以兩個集合有兩個公共元素,所以元素個數(shù)為2,故選:B.【點睛】本題考查集合的交集運算,關(guān)鍵在于作出集合所表示的點的圖象,再運用數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.8.C【解析】
畫出可行域和目標函數(shù),根據(jù)平移得到最大值.【詳解】若實數(shù)x,y滿足條件,目標函數(shù)如圖:當時函數(shù)取最大值為故答案選C【點睛】求線性目標函數(shù)的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最小;當時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.9.A【解析】
利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)可以求得結(jié)果.【詳解】由,,得.選A.【點睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),等差數(shù)列的等和性應(yīng)用能快速求得結(jié)果.10.C【解析】試題分析:,.故C正確.考點:復(fù)合函數(shù)求值.11.A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關(guān)鍵.12.D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】由題意,可得所得到的幾何體是由一個圓柱挖去兩個半球而成;其中,圓柱的底面半徑為1,母線長為2;體積為;兩個半球的半徑都為1,則兩個半球的體積為;則所求幾何體的體積為.考點:旋轉(zhuǎn)體的組合體.14.【解析】
將代入求解即可;當為奇數(shù)時,,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當為偶數(shù)時,,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進而比較得到的最大值.【詳解】由題,,解得.當為奇數(shù)時,,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當為偶數(shù)時,,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.15.13【解析】
由導(dǎo)函數(shù)的應(yīng)用得:設(shè),,所以,,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【詳解】解:設(shè),,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【點睛】本題考查了導(dǎo)函數(shù)的應(yīng)用、二項式定理,屬于中檔題16.【解析】
先畫出不等式組對應(yīng)的可行域,再利用數(shù)形結(jié)合分析解答得解.【詳解】畫出不等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當直線經(jīng)過點時,直線的縱截距最小,目標函數(shù)取得最小值,且.故答案為:-8【點睛】本題主要考查線性規(guī)劃問題,意在考查學生對這些知識的理解掌握水平和數(shù)形結(jié)合分析能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)在犯錯誤的概率不超過0.10的前提下認為“性別與測評結(jié)果有關(guān)系”(3)見解析.【解析】
(1)由已知抽取的人中優(yōu)秀人數(shù)為20,這樣結(jié)合已知可得列聯(lián)表;(2)根據(jù)列聯(lián)表計算,比較后可得;(3)由于性別對結(jié)果有影響,因此用分層抽樣法.【詳解】解:(1)優(yōu)秀合格總計男生62228女生141832合計204060(2)由于,因此在犯錯誤的概率不超過0.10的前提下認為“性別與測評結(jié)果有關(guān)系”.(3)由(2)可知性別有可能對是否優(yōu)秀有影響,所以采用分層抽樣按男女生比例抽取一定的學生,這樣得到的結(jié)果對學生在該維度的總體表現(xiàn)情況會比較符合實際情況.【點睛】本題考查獨立性檢驗,考查分層抽樣的性質(zhì).考查學生的數(shù)據(jù)處理能力.屬于中檔題.18.(1)(2)存在;實數(shù)的取值范圍是【解析】
(1)根據(jù)橢圓定義計算,再根據(jù),,的關(guān)系計算即可得出橢圓方程;(2)設(shè)直線方程為,與橢圓方程聯(lián)立方程組,求出的范圍,根據(jù)根與系數(shù)的關(guān)系求出的中點坐標,求出的中垂線與軸的交點橫,得出關(guān)于的函數(shù),利用基本不等式得出的范圍.【詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點,使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點.設(shè)直線的方程為:,,,,,聯(lián)立方程組,消元得:,△,又,故.由根與系數(shù)的關(guān)系可得,設(shè)的中點為,,則,,線段的中垂線方程為:,令可得,即.,故,當且僅當即時取等號,,且.的取值范圍是,.【點睛】本題主要考查了橢圓的性質(zhì),考查直線與橢圓的位置關(guān)系,意在考查學生對這些知識的理解掌握水平和分析推理能力.19.(1)b=32【解析】試題分析:(1)本問考查解三角形中的的“邊角互化”.由于求b的值,所以可以考慮到根據(jù)余弦定理將cosB,cosC分別用邊表示,再根據(jù)正弦定理可以將sinAsinC轉(zhuǎn)化為ac,于是可以求出b的值;(2)首先根據(jù)sinB+3cosB=2求出角B的值,根據(jù)第(1)問得到的b值,可以運用正弦定理求出ΔABC外接圓半徑R,于是可以將a+c轉(zhuǎn)化為2RsinA+2R試題解析:(1)由cosB應(yīng)用余弦定理,可得a2化簡得2b=3則b=(2)∵cos∴12cos∵B∈(0,π)∴B+π6=法一.∵2R=b則a+c==sin=3=3sin又∵0<A<2π3,法二因為b=32得34又因為ac≤(a+c2)2所以34=(a+c)∴a+c≤3又由三邊關(guān)系定理可知綜上a+c∈(考點:1.正、余弦定理;2.正弦型函數(shù)求值域;3.重要不等式的應(yīng)用.20.(1),ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)【解析】(1)P(ξ)是“ξ個人命中,3-ξ個人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的數(shù)學期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.21.(1)單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間(2)證明見解析【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負判斷單調(diào)性,(2)整理,化簡為,令,求的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 烘培早餐活動方案
- 烘焙圣誕活動方案
- 煙葉烘烤活動方案
- 外賣績效獎勵管理辦法
- 好評回訪評價管理辦法
- 地鐵風險評估管理辦法
- 資金同級劃轉(zhuǎn)管理辦法
- 調(diào)試工序管理辦法模板
- 科協(xié)項目審批管理辦法
- 定向委托采購管理辦法
- 2023年湖北省高中學業(yè)水平合格性考試數(shù)學試題試卷及答案解析
- 保定一中1+3物理試卷
- 弟子規(guī)注音A4直接打印版
- 金融學原理重點總結(jié)彭興韻
- Cmk設(shè)備能力指數(shù)分析表
- J17J177 鋼絲網(wǎng)架珍珠巖復(fù)合保溫外墻板建筑構(gòu)造
- 水泥檢測培訓試題(附答案)
- 譯林版三年級英語上冊《全冊課件》ppt
- 高標準農(nóng)田建設(shè)上圖入庫(技術(shù)培訓)
- ma600學員座艙圖冊用戶培訓中心
- 城鎮(zhèn)燃氣場站經(jīng)營企業(yè)安全生產(chǎn)標準化評分標準
評論
0/150
提交評論