2025屆河南省百校聯盟校高三第四次模擬數學試題_第1頁
2025屆河南省百校聯盟校高三第四次模擬數學試題_第2頁
2025屆河南省百校聯盟校高三第四次模擬數學試題_第3頁
2025屆河南省百校聯盟校高三第四次模擬數學試題_第4頁
2025屆河南省百校聯盟校高三第四次模擬數學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆河南省百校聯盟校高三第四次模擬數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,在邊上滿足,為的中點,則().A. B. C. D.2.在聲學中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.3.已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標原點),則雙曲線的離心率為()A. B.3 C. D.4.曲線在點處的切線方程為,則()A. B. C.4 D.85.對于函數,若滿足,則稱為函數的一對“線性對稱點”.若實數與和與為函數的兩對“線性對稱點”,則的最大值為()A. B. C. D.6.已知為虛數單位,若復數,,則A. B.C. D.7.設i是虛數單位,若復數是純虛數,則a的值為()A. B.3 C.1 D.8.已知實數、滿足不等式組,則的最大值為()A. B. C. D.9.函數的大致圖象為()A. B.C. D.10.若雙曲線:的一條漸近線方程為,則()A. B. C. D.11.已知函數若恒成立,則實數的取值范圍是()A. B. C. D.12.若函數在處取得極值2,則()A.-3 B.3 C.-2 D.2二、填空題:本題共4小題,每小題5分,共20分。13.若,則=______,=______.14.若,且,則的最小值是______.15.設函數,,其中.若存在唯一的整數使得,則實數的取值范圍是_____.16.記為數列的前項和,若,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點.求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.18.(12分)已知在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.19.(12分)在平面直角坐標系xOy中,直線l的參數方程為(t為參數),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)設點,直線l與曲線C交于不同的兩點A、B,求的值.20.(12分)某企業質量檢驗員為了檢測生產線上零件的質量情況,從生產線上隨機抽取了個零件進行測量,根據所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據頻率分布直方圖,求這個零件尺寸的中位數(結果精確到);(2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設表示尺寸在上的零件個數,求的分布列及數學期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率.現對生產線上生產的零件進行成箱包裝出售,每箱個.企業在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為元.若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業要向買家對每個二等品支付元的賠償費用.現對一箱零件隨機抽檢了個,結果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據,該企業是否對該箱余下的所有零件進行檢驗?請說明理由.21.(12分)已知正實數滿足.(1)求的最小值.(2)證明:22.(10分)已知函數.(1)當時,求函數在處的切線方程;(2)若函數沒有零點,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由,可得,,再將代入即可.【詳解】因為,所以,故.故選:B.【點睛】本題考查平面向量的線性運算性質以及平面向量基本定理的應用,是一道基礎題.2、D【解析】

由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當時,,∴,當時,,∴,∴,故選:D.【點睛】本小題主要考查對數運算,屬于基礎題.3、B【解析】

設,代入雙曲線方程相減可得到直線的斜率與中點坐標之間的關系,從而得到的等式,求出離心率.【詳解】,設,則,兩式相減得,∴,.故選:B.【點睛】本題考查求雙曲線的離心率,解題方法是點差法,即出現雙曲線的弦中點坐標時,可設弦兩端點坐標代入雙曲線方程相減后得出弦所在直線斜率與中點坐標之間的關系.4、B【解析】

求函數導數,利用切線斜率求出,根據切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數的幾何意義,切線方程,屬于中檔題.5、D【解析】

根據已知有,可得,只需求出的最小值,根據,利用基本不等式,得到的最小值,即可得出結論.【詳解】依題意知,與為函數的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數函數的運算和圖像性質、基本不等式,理解新定義含義,正確求出的表達式是解題的關鍵,屬于中檔題.6、B【解析】

由可得,所以,故選B.7、D【解析】

整理復數為的形式,由復數為純虛數可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數,所以,則,故選:D【點睛】本題考查已知復數的類型求參數范圍,考查復數的除法運算.8、A【解析】

畫出不等式組所表示的平面區域,結合圖形確定目標函數的最優解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區域,如圖所示,由目標函數,化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數取得最大值,又由,解得,所以目標函數的最大值為,故選A.【點睛】本題主要考查簡單線性規劃求解目標函數的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數的最優解是解答的關鍵,著重考查了數形結合思想,及推理與計算能力,屬于基礎題.9、A【解析】

利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數解析式判斷函數的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.10、A【解析】

根據雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎題.11、D【解析】

由恒成立,等價于的圖像在的圖像的上方,然后作出兩個函數的圖像,利用數形結合的方法求解答案.【詳解】因為由恒成立,分別作出及的圖象,由圖知,當時,不符合題意,只須考慮的情形,當與圖象相切于時,由導數幾何意義,此時,故.故選:D【點睛】此題考查的是函數中恒成立問題,利用了數形結合的思想,屬于難題.12、A【解析】

對函數求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數的導數與極值,考查了學生的運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】

①根據換底公式計算即可得解;②根據同底對數加法法則,結合①的結果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點睛】此題考查對數的基本運算,涉及換底公式和同底對數加法運算,屬于基礎題目.14、8【解析】

利用的代換,將寫成,然后根據基本不等式求解最小值.【詳解】因為(即取等號),所以最小值為.【點睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.15、【解析】

根據分段函數的解析式畫出圖像,再根據存在唯一的整數使得數形結合列出臨界條件滿足的關系式求解即可.【詳解】解:函數,且畫出的圖象如下:因為,且存在唯一的整數使得,故與在時無交點,,得;又,過定點又由圖像可知,若存在唯一的整數使得時,所以,存在唯一的整數使得所以.根據圖像可知,當時,恒成立.綜上所述,存在唯一的整數使得,此時故答案為:【點睛】本題主要考查了數形結合分析參數范圍的問題,需要根據題意分別分析定點右邊的整數點中為滿足條件的唯一整數,再數形結合列出時的不等式求的范圍.屬于難題.16、-254【解析】

利用代入即可得到,即是等比數列,再利用等比數列的通項公式計算即可.【詳解】由已知,得,即,所以又,即,,所以是以-4為首項,2為公比的等比數列,所以,即,所以。故答案為:【點睛】本題考查已知與的關系求,考查學生的數學運算求解能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)詳見解析.【解析】

(1)利用平行四邊形的方法,證明平面.(2)通過證明平面,由此證得.【詳解】(1)設是中點,連接,由于是中點,所以且,而且,所以與平行且相等,所以四邊形是平行四邊形,所以,由于平面,平面,所以平面.(2)連接,由于直三棱柱中,而,,所以平面,所以,由于,所以.由于四邊形是矩形且,所以四邊形是正方形,所以,由于,所以平面,所以.【點睛】本小題主要考查線面平行的證明,考查線面垂直的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)(2)【解析】

(1)先消去參數,化為直角坐標方程,再利用求解.(2)直線與曲線方程聯立,得,求得弦長和點到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標方程為.(2)由,得,設,兩點對應的極分別為,,則,,所以,又點到直線的距離所以【點睛】本題主要考查參數方程、直角坐標方程及極坐標方程的轉化和直線與曲線的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.19、(1),(2)【解析】

(1)利用極坐標與直角坐標的互化公式即可把曲線的極坐標方程化為直角坐標方程,利用消去參數即可得到直線的直角坐標方程;(2)由于在直線上,寫出直線的標準參數方程參數方程,代入曲線的方程利用參數的幾何意義即可得出求解即可.【詳解】(1)直線的普通方程為,即,根據極坐標與直角坐標之間的相互轉化,,,而,則,即,故直線l的普通方程為,曲線C的直角坐標方程(2)點在直線l上,且直線的傾斜角為,可設直線的參數方程為:(t為參數),代入到曲線C的方程得,,,由參數的幾何意義知.【點睛】熟練掌握極坐標與直角坐標的互化公式、方程思想、直線的參數方程中的參數的幾何意義是解題的關鍵,難度一般.20、(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗,理由見詳解.【解析】

(1)計算的頻率,并且與進行比較,判斷中位數落在的區間,然后根據頻率的計算方法,可得結果.(2)計算位于之外的零件中隨機抽取個的總數,寫出所有可能取值,并計算相對應的概率,列出分布列,計算期望,可得結果.(3)計算整箱的費用,根據余下零件個數服從二項分布,可得余下零件個數的期望值,然后計算整箱檢驗費用與賠償費用之和的期望值,進行比較,可得結果.【詳解】(1)尺寸在的頻率:尺寸在的頻率:且所以可知尺寸的中位數落在假設尺寸中位數為所以所以這個零件尺寸的中位數(2)尺寸在的個數為尺寸在的個數為的所有可能取值為1,2,3,4則,,所以的分布列為(3)二等品的概率為如果對余下的零件進行檢驗則整箱的檢驗費用為(元)余下二等品的個數期望值為如果不對余下的零件進行檢驗,整箱檢驗費用與賠償費用之和的期望值為(元)所以,所以可以不對余下的零件進行檢驗.【點睛】本題考查頻率分布直方圖的應用,掌握中位數,平均數,眾數的計算方法,中位數的理解應該從中位數開始左右兩邊的頻率各為0.5,考驗分析能力以及數據處理,屬中檔題.21、(1);(2)見解析【解析】

(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)【點睛】本題考查了基本不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論