2022年黑龍江省大慶市名校九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2022年黑龍江省大慶市名校九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2022年黑龍江省大慶市名校九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2022年黑龍江省大慶市名校九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2022年黑龍江省大慶市名校九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.一個(gè)小正方體沿著斜面前進(jìn)了10米,橫截面如圖所示,已知,此時(shí)小正方體上的點(diǎn)距離地面的高度升高了()A.5米 B.米 C.米 D.米2.將矩形紙片ABCD按如圖所示的方式折疊,恰好得到菱形AECF,若AB=3,則菱形AECF的面積為()A.1 B.2 C.2 D.43.如圖,,兩條直線與三條平行線分別交于點(diǎn)和.已知,則的值為()A. B. C. D.4.如圖,為的直徑,為上一點(diǎn),弦平分,交于點(diǎn),,,則的長為()A.2.5 B.2.8 C.3 D.3.25.若,則函數(shù)與在同一平面直角坐標(biāo)系中的圖象大致是()A. B. C. D.6.一枚質(zhì)地均勻的骰子,其六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6,投擲一次,朝上一面的數(shù)字是偶數(shù)的概率為().A. B. C. D.7.如圖,D、E分別是△ABC的邊AB、BC上的點(diǎn),DE∥AC.若S△BDE:S△ADE=1:2.則S△DOE:S△AOC的值為()A. B. C. D.8.在平面直角坐標(biāo)系xOy中,經(jīng)過點(diǎn)(sin45°,cos30°)的直線,與以原點(diǎn)為圓心,2為半徑的圓的位置關(guān)系是()A.相交 B.相切C.相離 D.以上三者都有可能9.已知菱形的邊長為,若對角線的長為,則菱形的面積為()A. B. C. D.10.如圖,正方形的邊長為4,點(diǎn)是的中點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿移動(dòng)至終點(diǎn),設(shè)點(diǎn)經(jīng)過的路徑長為,的面積為,則下列圖象能大致反映與函數(shù)關(guān)系的是()A. B. C. D.二、填空題(每小題3分,共24分)11.一元二次方程x2﹣x﹣=0配方后可化為__________.12.如右圖是一個(gè)立體圖形的三視圖,那么這個(gè)立體圖形的體積為______.13.若分式的值為0,則x的值為_______.14.已知,P為等邊三角形ABC內(nèi)一點(diǎn),PA=3,PB=4,PC=5,則S△ABC=_____.15.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)的圖像上部分點(diǎn)的橫坐標(biāo)x和縱坐標(biāo)y的對應(yīng)值如下表x…-10123…y…-3-3-139…關(guān)于x的方程ax2+bx+c=0一個(gè)負(fù)數(shù)解x1滿足k<x1<k+1(k為整數(shù)),則k=________.16.反比例函數(shù)的圖象上有一點(diǎn)P(2,n),將點(diǎn)P向右平移1個(gè)單位,再向下平移1個(gè)單位得到點(diǎn)Q,若點(diǎn)Q也在該函數(shù)的圖象上,則k=____________.17.一支反比例函數(shù),若,則y的取值范圍是_____.18.在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別是,以點(diǎn)為位似中心,相們比為,把縮小,得到,則點(diǎn)的對應(yīng)點(diǎn)的坐標(biāo)為_____.三、解答題(共66分)19.(10分)在△ABC中,AB=AC,∠A=60°,點(diǎn)D是線段BC的中點(diǎn),∠EDF=120°,DE與線段AB相交于點(diǎn)E,DF與線段AC(或AC的延長線)相交于點(diǎn)F.(1)如圖1,若DF⊥AC,垂足為F,證明:DE=DF(2)如圖2,將∠EDF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點(diǎn)F.DE=DF仍然成立嗎?說明理由.(3)如圖3,將∠EDF繼續(xù)繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,使DF與線段AC的延長線相交于點(diǎn)F,DE=DF仍然成立嗎?說明理由.20.(6分)(1)①如圖1,請用直尺(不帶刻度)和圓規(guī)作出的內(nèi)接正三角形(按要求作圖,不要求寫作法,但要保留作圖痕跡).②若的內(nèi)接正三角形邊長為6,求的半徑;(2)如圖2,的半徑就是(1)中所求半徑的值.點(diǎn)在上,是的切線,點(diǎn)在射線上,且,點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿射線方向移動(dòng),點(diǎn)是上的點(diǎn)(不與點(diǎn)重合),是的切線.設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為(秒),當(dāng)為何值時(shí),是直角三角形,請你求出滿足條件的所有值.21.(6分)城市規(guī)劃期間,欲拆除一電線桿AB,已知距電線桿AB水平距離14m的D處有一大壩,背水坡CD的坡度i=2:1,壩高CF為2m,在壩頂C處測得桿頂A的仰角為30°,D、E之間是寬為2m的人行道.試問:在拆除電線桿AB時(shí),為確保行人安全,是否需要將此人行道封上?請說明理由(在地面上,以點(diǎn)B為圓心,以AB長為半徑的圓形區(qū)域?yàn)槲kU(xiǎn)區(qū)域.)(≈1.732,≈1.414)22.(8分)如圖,直線y=1x+1與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=1.(1)求H點(diǎn)的坐標(biāo)及k的值;(1)點(diǎn)P在y軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點(diǎn)坐標(biāo);(3)點(diǎn)N(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),點(diǎn)Q(m,0)是x軸上的動(dòng)點(diǎn),當(dāng)△MNQ的面積為3時(shí),請求出所有滿足條件的m的值.23.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,連接AD,DE.(1)求證:D是BC的中點(diǎn)(2)若DE=3,AD=1,求⊙O的半徑.24.(8分)一個(gè)不透明的箱子里放有2個(gè)白球,1個(gè)黑球和1個(gè)紅球,它們除顏色外其余都相同.箱子里摸出1個(gè)球后不放回,搖勻后再摸出1個(gè)球,求兩次摸到的球都是白球的概率。(請用列表或畫樹狀圖等方法)25.(10分)某中學(xué)對全校學(xué)生進(jìn)行文明禮儀知識(shí)測試,為了解測試結(jié)果,隨機(jī)抽取部分學(xué)生的成績進(jìn)行分析,將成績分為三個(gè)等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計(jì)圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:(1)請將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;(2)若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績,則該校被抽取的學(xué)生中有人達(dá)標(biāo);(3)若該校學(xué)生有1200人,請你估計(jì)此次測試中,全校達(dá)標(biāo)的學(xué)生有多少人?26.(10分)如圖,△ABC和△DEF均為正三角形,D,E分別在AB,BC上,請找出一個(gè)與△DBE相似的三角形并證明.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)題意,用未知數(shù)設(shè)出斜面的鉛直高度和水平寬度,再運(yùn)用勾股定理列方程求解.【詳解】解:Rt△ABC中,AB=2BC,

設(shè)BC=x,則AC=2x,

根據(jù)勾股定理可得,

x2+(2x)2=102,

解得x=或x=(負(fù)值舍去),即小正方體上的點(diǎn)N距離地面AB的高度升高了米,

故選:B.【點(diǎn)睛】此題主要考查了解直角三角形的應(yīng)用-坡度坡角問題,解題的關(guān)鍵是熟練運(yùn)用勾股定理的知識(shí),此題比較簡單.2、C【分析】根據(jù)菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通過折疊的性質(zhì),結(jié)合直角三角形勾股定理求得BC的長,則利用菱形的面積公式即可求解.【詳解】解:∵四邊形AECF是菱形,AB=3,∴假設(shè)BE=x,則AE=3﹣x,CE=3﹣x,∵四邊形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC===,又∵AE=AB﹣BE=3﹣1=2,則菱形的面積是:AEBC=2.故選C.【點(diǎn)睛】本題考查折疊問題以及勾股定理.解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.3、C【分析】由得設(shè)可得答案.【詳解】解:,,設(shè)則故選C.【點(diǎn)睛】本題考查的是平行線分線段成比例,比例線段,掌握這兩個(gè)知識(shí)點(diǎn)是解題的關(guān)鍵.4、B【分析】連接BD,CD,由勾股定理求出BD的長,再利用,得出,從而求出DE的長,最后利用即可得出答案.【詳解】連接BD,CD∵為的直徑∵弦平分即解得故選:B.【點(diǎn)睛】本題主要考查圓周角定理的推論及相似三角形的判定及性質(zhì),掌握圓周角定理的推論及相似三角形的性質(zhì)是解題的關(guān)鍵.5、B【分析】根據(jù)及正比例函數(shù)與反比例函數(shù)圖象的特點(diǎn),可以從和兩方面分類討論得出答案.【詳解】∵,∴分兩種情況:

(1)當(dāng)時(shí),正比例函數(shù)數(shù)的圖象過原點(diǎn)、第一、三象限,反比例函數(shù)圖象在第二、四象限,無此選項(xiàng);

(2)當(dāng)時(shí),正比例函數(shù)的圖象過原點(diǎn)、第二、四象限,反比例函數(shù)圖象在第一、三象限,選項(xiàng)B符合.

故選:B.【點(diǎn)睛】本題主要考查了反比例函數(shù)的圖象性質(zhì)和正比例函數(shù)的圖象性質(zhì),解題的關(guān)鍵是掌握它們的性質(zhì).6、B【分析】朝上的數(shù)字為偶數(shù)的有3種可能,再根據(jù)概率公式即可計(jì)算.【詳解】依題意得P(朝上一面的數(shù)字是偶數(shù))=故選B.【點(diǎn)睛】此題主要考查概率的計(jì)算,解題的關(guān)鍵是熟知概率公式進(jìn)行求解.7、B【分析】依次證明和,利用相似三角形的性質(zhì)解題.【詳解】∵,

∴,

∴,

∵∥,∴,∴,

∵∥,∴,∴,

故選:B.【點(diǎn)睛】本題主要考查了相似三角形的判定及其性質(zhì)的應(yīng)用問題;解題的關(guān)鍵是靈活運(yùn)用形似三角形的判定及其性質(zhì)來分析、判斷、推理或解答.8、A【解析】試題分析:本題考查了直線和圓的位置關(guān)系,用到的知識(shí)點(diǎn)有特殊角的銳角三角函數(shù)值、勾股定理的運(yùn)用,判定點(diǎn)A和圓的位置關(guān)系是解題關(guān)鍵.設(shè)直線經(jīng)過的點(diǎn)為A,若點(diǎn)A在圓內(nèi)則直線和圓一定相交;若點(diǎn)在圓上或圓外則直線和圓有可能相交或相切或相離,所以先要計(jì)算OA的長和半徑2比較大小再做選擇.設(shè)直線經(jīng)過的點(diǎn)為A,∵點(diǎn)A的坐標(biāo)為(sin45°,cos30°),∴OA==,∵圓的半徑為2,∴OA<2,∴點(diǎn)A在圓內(nèi),∴直線和圓一定相交.故選A.考點(diǎn):1.直線與圓的位置關(guān)系;2.坐標(biāo)與圖形性質(zhì);3.特殊角的三角函數(shù)值.9、B【分析】先求出對角線AC的長度,再根據(jù)“菱形的面積等于對角線乘積的一半”,即可得出答案.【詳解】根據(jù)題意可得:AB=BC=CD=AD=13cm,BD=10cm∵ABCD為菱形∴BD⊥AC,BO=DO=AO=AC=2AO=24cm∴故答案選擇B.【點(diǎn)睛】本題考查的是菱形,難度適中,需要熟練掌握菱形面積的兩種求法.10、C【分析】結(jié)合題意分情況討論:①當(dāng)點(diǎn)P在AE上時(shí),②當(dāng)點(diǎn)P在AD上時(shí),③當(dāng)點(diǎn)P在DC上時(shí),根據(jù)三角形面積公式即可得出每段的y與x的函數(shù)表達(dá)式.【詳解】①當(dāng)點(diǎn)在上時(shí),∵正方形邊長為4,為中點(diǎn),∴,∵點(diǎn)經(jīng)過的路徑長為,∴,∴,②當(dāng)點(diǎn)在上時(shí),∵正方形邊長為4,為中點(diǎn),∴,∵點(diǎn)經(jīng)過的路徑長為,∴,,∴,,,,③當(dāng)點(diǎn)在上時(shí),∵正方形邊長為4,為中點(diǎn),∴,∵點(diǎn)經(jīng)過的路徑長為,∴,,∴,綜上所述:與的函數(shù)表達(dá)式為:.故答案為C.【點(diǎn)睛】本題考查動(dòng)點(diǎn)問題的函數(shù)圖象,解決動(dòng)點(diǎn)問題的函數(shù)圖象問題關(guān)鍵是發(fā)現(xiàn)y隨x的變化而變化的趨勢.二、填空題(每小題3分,共24分)11、【分析】移項(xiàng),配方,即可得出選項(xiàng).【詳解】x2﹣x﹣=0x2﹣x=x2﹣x+=+故填:.【點(diǎn)睛】本題考查了解一元二次方程的應(yīng)用,能正確配方是解此題的關(guān)鍵.12、250π【分析】根據(jù)三視圖可得這個(gè)幾何體是一個(gè)底面直徑為10,高為10的圓柱,再根據(jù)圓柱的體積公式列式計(jì)算即可.【詳解】解:根據(jù)這個(gè)立體圖形的三視圖可得:這個(gè)幾何體是一個(gè)圓柱,底面直徑為10,高為10,

則這個(gè)立體圖形的體積為:π×52×10=250π,

故答案為:250π.【點(diǎn)睛】本題考查了由三視圖判斷幾何體,考查學(xué)生對三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對空間想象能力方面的考查.13、-1【分析】根據(jù)分式的值為零的條件可以求出x的值.【詳解】解:根據(jù)題意得:,解得:x=-1.

故答案為:-1.【點(diǎn)睛】若分式的值為零,需同時(shí)具備兩個(gè)條件:(1)分子為2;(2)分母不為2.這兩個(gè)條件缺一不可.14、【分析】將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BP=4,AE=PC=5,∠PBE=60°,則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延長BP,作AF⊥BP于點(diǎn)F,根據(jù)勾股定理的逆定理可得到△APE為直角三角形,且∠APE=90°,即可得到∠APB的度數(shù),在Rt△APF中利用三角函數(shù)求得AF和PF的長,則在Rt△ABF中利用勾股定理求得AB的長,進(jìn)而求得三角形ABC的面積.【詳解】解:∵△ABC為等邊三角形,∴BA=BC,可將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,連EP,且延長BP,作AF⊥BP于點(diǎn)F.如圖,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE為等邊三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE為直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.∴△ABC的面積=AB2=(25+12)=;故答案為:.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個(gè)圖形全等,對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.也考查了等邊三角形的判定與性質(zhì)以及勾股定理的逆定理.15、-1【分析】首先利用表中的數(shù)據(jù)求出二次函數(shù),再利用求根公式解得x1,再利用夾逼法可確定x1

的取值范圍,可得k.【詳解】解:把x=0,y=-1,x=1,y=-1,x=-1,y=-1代入y=ax2+bx+c得,解得,∴y=x2+x-1,∵△=b2-4ac=12-4×1×(-1)=11,

∴x==?1±,

∵<0,∴=?1-<0,

∵-4≤-≤-1,

∴,

∴-1≤?1?≤,

∵整數(shù)k滿足k<x1<k+1,

∴k=-1,

故答案為:-1.【點(diǎn)睛】本題考查了二次函數(shù)的圖象和性質(zhì),解題的關(guān)鍵是求出二次函數(shù)的解析式.16、1【分析】根據(jù)平移的特性寫出點(diǎn)Q的坐標(biāo),由點(diǎn)P、Q均在反比例函數(shù)的圖象上,即可得出k=2n=3(n﹣1),解出即可.【詳解】∵點(diǎn)P的坐標(biāo)為(2,n),則點(diǎn)Q的坐標(biāo)為(3,n﹣1),依題意得:k=2n=3(n﹣1),解得:n=3,∴k=2×3=1,故答案為1.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、反比例函數(shù)系數(shù)k的幾何意義,解題的關(guān)鍵:由P點(diǎn)坐標(biāo)表示出Q點(diǎn)坐標(biāo).17、y<-1【分析】根據(jù)函數(shù)解析式可知當(dāng)x>0時(shí),y隨x的增大而增大,求出當(dāng)x=1時(shí)對應(yīng)的y值即可求出y的取值范圍.【詳解】解:∵反比例函數(shù),-4<0,∴當(dāng)x>0時(shí),y隨x的增大而增大,當(dāng)x=1時(shí),y=-1,∴當(dāng),則y的取值范圍是y<-1,故答案為:y<-1.【點(diǎn)睛】本題考查了根據(jù)反比例函數(shù)自變量的取值范圍,確定函數(shù)值的取值范圍,解題的關(guān)鍵是熟知反比例函數(shù)的增減性.18、或【解析】利用位似圖形的性質(zhì)可得對應(yīng)點(diǎn)坐標(biāo)乘以和-即可求解.【詳解】解:以點(diǎn)為位似中心,相似比為,把縮小,點(diǎn)的坐標(biāo)是則點(diǎn)的對應(yīng)點(diǎn)的坐標(biāo)為或,即或,故答案為:或.【點(diǎn)睛】本題考查的是位似圖形,熟練掌握位似變換是解題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2)結(jié)論仍然成立.,DE=DF,見解析;(3)仍然成立,DE=DF,見解析【分析】(1)由題意根據(jù)全等三角形的性質(zhì)與判定,結(jié)合等邊三角形性質(zhì)證明△BED≌△CFD(ASA),即可證得DE=DF;(2)根據(jù)題意先取AC中點(diǎn)G,連接DG,繼而再全等三角形的性質(zhì)與判定,結(jié)合等邊三角形性質(zhì)證明△EDG≌△FDC(ASA),進(jìn)而證得DE=DF;(3)由題意過點(diǎn)D作DN⊥AC于N,DM⊥AB于M,繼而再全等三角形的性質(zhì)與判定,結(jié)合等邊三角形性質(zhì)證明△DME≌△DNF(ASA),即可證得DE=DF.【詳解】解:(1)∵AB=AC,∠A=60°,∴△ABC是等邊三角形,即∠B=∠C=60°,∵D是BC的中點(diǎn),∴BD=CD,∵∠EDF=120°,DF⊥AC,∴∠FDC=30°,∴∠EDB=30°,∴△BED≌△CFD(ASA),∴DE=DF.(2)取AC中點(diǎn)G,連接DG,如下圖,∵D為BC的中點(diǎn),∴DG=AC=BD=CD,∴△BDG是等邊三角形,∴∠GDE+∠EDB=60°,∵∠EDF=120°,∴∠FDC+∠EDB=60°,∴∠EDG=∠FDC,∴△EDG≌△FDC(ASA),∴DE=DF,∴結(jié)論仍然成立.(3)如下圖,過點(diǎn)D作DN⊥AC于N,DM⊥AB于M,∴∠DME=∠DNF=90°,由(1)可知∠B=∠C=60°,∴∠NDC=∠BDM=30°,DM=DN,∴∠MDN=120°,即∠NDF=∠MDE,∴△DME≌△DNF(ASA),∴DE=DF,∴仍然成立.【點(diǎn)睛】本題是幾何變換綜合題,主要考查全等三角形的判斷和性質(zhì)以及等邊三角形的性質(zhì),根據(jù)題意構(gòu)造出全等三角形是解本題的關(guān)鍵.20、(1)①見解析;②;(2).【分析】(1)①作半徑的垂直平分線與圓交于,再取,則即為正三角形;②連接,設(shè)半徑為,利用勾股定理即可求得答案;(2)分當(dāng),且點(diǎn)在點(diǎn)左側(cè)或右側(cè),時(shí)四種情況討論,當(dāng)時(shí),在Rt中利用勾股定理求解即可;當(dāng)且點(diǎn)在點(diǎn)左側(cè)或右側(cè)時(shí),構(gòu)造矩形和直角三角形,利用解直角三角形即可求解;當(dāng)時(shí),構(gòu)造正方形和直角三角形即可求解.【詳解】(1)①等邊如圖所示;②連接,如圖,設(shè)半徑為,由作圖知:,⊥,∴,在中,,即,解得:;(2)當(dāng)時(shí),連接,如圖,∵QG是的切線,∴,∵,∴三點(diǎn)共線,又∵DF是的切線,∴,設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為(秒),∴,在中,,,∴,在Rt中,,,,∴,即,解得:;當(dāng),且點(diǎn)在點(diǎn)左側(cè)時(shí),連接,過點(diǎn)G作GM⊥OD于M,如圖,∵是的切線,∴,∴四邊形DFGM為矩形,∴,在Rt中,,,∴,∵,∴,∵QG是的切線,四邊形DFGM為矩形,∴,∴在Rt中,,,∴即解得:;當(dāng)時(shí),連接,如圖,∵是的切線,QG是的切線,∴,,∴四邊形ODQG為正方形,∴,∴;當(dāng),且點(diǎn)在點(diǎn)左側(cè)時(shí),連接,過點(diǎn)O作ON⊥于N,如圖,∵是的切線,∴,∴四邊形DFNO為矩形,∴,在Rt中,,,∴,∵,∴,∴,,∴,∵QG是的切線,,∴,∴,∴,∴;綜上:當(dāng)、、、時(shí),是直角三角形.【點(diǎn)睛】本題考查了圓的綜合題,涉及到的知識(shí)有:簡單作圖,勾股定理,切線的性質(zhì),矩形的判定和性質(zhì),正方形的判定和性質(zhì),解直角三角形,構(gòu)造合適的輔助線是解題的關(guān)鍵.21、不必封上人行道【分析】過C點(diǎn)作CG⊥AB交AB于G.求需不需要將人行道封上實(shí)際上就是比較AB與BE的長短,已知BD,DF的長度,那么AB的長度也就求出來了,現(xiàn)在只需要知道BE的長度即可,有BF的長,ED的長,缺少的是DF的長,根據(jù)“背水坡CD的坡度i=1:2,壩高CF為2m”DF是很容易求出的,這樣有了CG的長,在△ACG中求出AG的長度,這樣就求出AB的長度,有了BE的長,就可以判斷出是不是需要封上人行道了.【詳解】過C點(diǎn)作CG⊥AB交AB于G.在Rt△CDF中,水坡CD的坡度i=2:1,即tan∠CDF=2,∵CF=2,∴DF=1.∴BF=BD+DF=12+1=13.∴CG=13,在Rt△ACG中,∵∠ACG=30°,∴AG=CG·tan30°=13×=7.5m∴AB=AG+BG=7.5+2=9.5m,BE=12m,AB<BE,∴不必封上人行道.【點(diǎn)睛】本題考查俯角、仰角的定義,要求學(xué)生能借助俯角、仰角構(gòu)造直角三角形并結(jié)合圖形利用三角函數(shù)解直角三角形.22、(1)k=4;(1)點(diǎn)P的坐標(biāo)為(0,6)或(0,1+),或(0,1﹣);(2)m=7或2.【解析】(1)先求出OA=1,結(jié)合tan∠AHO=1可得OH的長,即可得知點(diǎn)M的橫坐標(biāo),代入直線解析式可得點(diǎn)M坐標(biāo),代入反比例解析式可得k的值;

(1)分AM=AP和AM=PM兩種情況分別求解可得;

(2)先求出點(diǎn)N(4,1),延長MN交x軸于點(diǎn)C,待定系數(shù)法求出直線MN解析式為y=-x+3.據(jù)此求得OC=3,再由S△MNQ=S△MQC-S△NQC=2知QC=1,再進(jìn)一步求解可得.【詳解】(1)由y=1x+1可知A(0,1),即OA=1,∵tan∠AHO=1,∴OH=1,∴H(1,0),∵M(jìn)H⊥x軸,∴點(diǎn)M的橫坐標(biāo)為1,∵點(diǎn)M在直線y=1x+1上,∴點(diǎn)M的縱坐標(biāo)為4,即M(1,4),∵點(diǎn)M在y=上,∴k=1×4=4;(1)①當(dāng)AM=AP時(shí),∵A(0,1),M(1,4),∴AM=,則AP=AM=,∴此時(shí)點(diǎn)P的坐標(biāo)為(0,1﹣)或(0,1+);②若AM=PM時(shí),設(shè)P(0,y),則PM=,∴=,解得y=1(舍)或y=6,此時(shí)點(diǎn)P的坐標(biāo)為(0,6),綜上所述,點(diǎn)P的坐標(biāo)為(0,6)或(0,1+),或(0,1﹣);(2)∵點(diǎn)N(a,1)在反比例函數(shù)y=(x>0)圖象上,∴a=4,∴點(diǎn)N(4,1),延長MN交x軸于點(diǎn)C,設(shè)直線MN的解析式為y=mx+n,則有解得,∴直線MN的解析式為y=﹣x+3.∵點(diǎn)C是直線y=﹣x+3與x軸的交點(diǎn),∴點(diǎn)C的坐標(biāo)為(3,0),OC=3,∵S△MNQ=2,∴S△MNQ=S△MQC﹣S△NQC=×QC×4﹣×QC×1=QC=2,∴QC=1,∵C(3,0),Q(m,0),∴|m﹣3|=1,∴m=7或2,故答案為7或2.【點(diǎn)睛】本題是反比例函數(shù)綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式、等腰三角形的判定與性質(zhì)、兩點(diǎn)之間的距離公式及三角形的面積計(jì)算.23、(1)證明見解析;(2)【分析】(1)根據(jù)圓周角定理、等腰三角形的三線合一的性質(zhì)即可證得結(jié)論;(2)根據(jù)圓周角定理及等腰三角形的判定得到DE=BD=3,再根據(jù)勾股定理求出AB,即可得到半徑的長.【詳解】(1)∵AB是⊙O直徑∴∠ADB=90°,在△A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論