




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第2章平面向量向量的線性運算2.2.1向量的加法A級基礎鞏固1.下列等式錯誤的是()A.a+0=a B.a+b=b+aC.a+(b+c)=(a+b)+c \o(AB,\s\up13(→))+eq\o(BA,\s\up13(→))=2eq\o(AB,\s\up13(→))解析:根據運算律知,選項A、B、C顯然正確,對于選項D,應為eq\o(AB,\s\up13(→))+eq\o(BA,\s\up13(→))=0.故D項錯誤.答案:D2.如圖所示,四邊形ABCD是梯形,AD∥BC,O是AC與BD的交點,則eq\o(OA,\s\up13(→))+eq\o(BC,\s\up13(→))+eq\o(AB,\s\up13(→))=()\o(CD,\s\up13(→)) B.-eq\o(CO,\s\up13(→))\o(DA,\s\up13(→)) \o(CO,\s\up13(→))解析:eq\o(OA,\s\up13(→))+eq\o(BC,\s\up13(→))+eq\o(AB,\s\up13(→))=eq\o(OA,\s\up13(→))+eq\o(AC,\s\up13(→))=eq\o(OC,\s\up13(→))=-eq\o(CO,\s\up13(→)).答案:B3.在四邊形ABCD中,若eq\o(AC,\s\up13(→))=eq\o(AB,\s\up13(→))+eq\o(AD,\s\up13(→)),則()A.四邊形ABCD為矩形B.四邊形ABCD是菱形C.四邊形ABCD是正方形D.四邊形ABCD是平行四邊形解析:由向量加減法的平行四邊形法則知四邊形ABCD是平行四邊形.答案:D4.已知向量a∥b,且|a|>|b|>0,則向量a+b的方向()A.與向量a方向相同 B.與向量a方向相反C.與向量b方向相同 D.與向量b方向相反解析:a∥b且|a|>|b|>0,所以當a,b同向時,a+b的方向與a相同,當a,b反向時,因為|a|>|b|,所以a+b的方向仍與a相同.答案:A5.在四邊形ABCD中,給出下列四個結論,其中一定正確的是()\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(CA,\s\up13(→)) \o(BC,\s\up13(→))+eq\o(CD,\s\up13(→))=eq\o(BD,\s\up13(→))\o(AB,\s\up13(→))+eq\o(AD,\s\up13(→))=eq\o(AC,\s\up13(→)) \o(AB,\s\up13(→))-eq\o(AD,\s\up13(→))=eq\o(BD,\s\up13(→))解析:由向量加減法法則知eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(AC,\s\up13(→)),eq\o(BC,\s\up13(→))+eq\o(CD,\s\up13(→))=eq\o(BD,\s\up13(→)),C項只有四邊形ABCD是平行四邊形時才成立.eq\o(AB,\s\up13(→))-eq\o(AD,\s\up13(→))=eq\o(DB,\s\up13(→)).答案:B6.在△ABC中,eq\o(AB,\s\up13(→))=a,eq\o(BC,\s\up13(→))=b,eq\o(CA,\s\up13(→))=c,則a+b+c=________.解析:由向量加法的三角形法則,得eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(AC,\s\up13(→)),則a+b+c=eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))+eq\o(CA,\s\up13(→))=0.答案:0\o(AB,\s\up13(→))+eq\o(DF,\s\up13(→))+eq\o(CD,\s\up13(→))+eq\o(BC,\s\up13(→))+eq\o(FA,\s\up13(→))=__________.答案:08.已知△ABC是正三角形,則在下列各等式中不成立的是()A.|eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))|=|eq\o(BC,\s\up13(→))+eq\o(CA,\s\up13(→))|B.|eq\o(AC,\s\up13(→))+eq\o(CB,\s\up13(→))|=|eq\o(BA,\s\up13(→))+eq\o(BC,\s\up13(→))|C.|eq\o(AB,\s\up13(→))+eq\o(AC,\s\up13(→))|=|eq\o(CA,\s\up13(→))+eq\o(CB,\s\up13(→))|D.|eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))+eq\o(AC,\s\up13(→))|=|eq\o(CB,\s\up13(→))+eq\o(BA,\s\up13(→))+eq\o(CA,\s\up13(→))|解析:如圖所示,作出正三角形ABC,AD,CE分別是三角形的中線,利用平行四邊形法則:|eq\o(AB,\s\up13(→))+eq\o(AC,\s\up13(→))|=2|eq\o(AD,\s\up13(→))|,|eq\o(CA,\s\up13(→))+eq\o(CB,\s\up13(→))|=2|eq\o(CE,\s\up13(→))|.又因為△ABC為正三角形,所以|eq\o(AD,\s\up13(→))|=|eq\o(CE,\s\up13(→))|.故C項正確.A、D兩項直接利用三角形法則判斷也是正確的,只有B項不正確.答案:B9.如圖所示,已知△ABC是直角三角形且∠A=90°.則在下列各結論中,正確的結論個數為________.①|eq\o(AB,\s\up13(→))+eq\o(AC,\s\up13(→))|=|eq\o(BC,\s\up13(→))|②|eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))|=|eq\o(CA,\s\up13(→))|③|eq\o(AB,\s\up13(→))+eq\o(CA,\s\up13(→))|=|eq\o(BC,\s\up13(→))|④|eq\o(AB,\s\up13(→))|2+|eq\o(AC,\s\up13(→))|2=|eq\o(BC,\s\up13(→))|2解析:以eq\o(AB,\s\up13(→)),eq\o(AC,\s\up13(→))為鄰邊作平行四邊形ABDC,則ABDC為矩形,而矩形的對角線相等,故①③均正確,另外兩個可直接求解也是正確的.答案:4個10.化簡:(1)eq\o(BC,\s\up13(→))+eq\o(AB,\s\up13(→));(2)eq\o(DB,\s\up13(→))+eq\o(CD,\s\up13(→))+eq\o(BC,\s\up13(→)).解:(1)eq\o(BC,\s\up13(→))+eq\o(AB,\s\up13(→))=eq\o(AB,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(AC,\s\up13(→)).(2)eq\o(DB,\s\up13(→))+eq\o(CD,\s\up13(→))+eq\o(BC,\s\up13(→))=eq\o(BC,\s\up13(→))+eq\o(CD,\s\up13(→))+eq\o(DB,\s\up13(→))=(eq\o(BC,\s\up13(→))+eq\o(CD,\s\up13(→)))+eq\o(DB,\s\up13(→))=eq\o(BD,\s\up13(→))+eq\o(DB,\s\up13(→))=0.B級能力提升11.在菱形ABCD中,∠DAB=60°,|eq\o(AB,\s\up13(→))|=1,則|eq\o(BC,\s\up13(→))+eq\o(CD,\s\up13(→))|=________.解析:eq\o(BC,\s\up13(→))+eq\o(CD,\s\up13(→))=eq\o(BD,\s\up13(→)),在菱形ABCD中,|eq\o(AD,\s\up13(→))|=|eq\o(AB,\s\up13(→))|=1,又∠DAB=60°,所以△ABD為等邊三角形.所以|eq\o(BD,\s\up13(→))|=1.答案:112.如圖所示,用兩根繩子把重為10N的物體W吊在水平桿AB上,∠ACW=150°,∠BCW=120°,求A和B處所受力的大小(繩子的重量忽略不計).解:設eq\o(CE,\s\up13(→)),eq\o(CF,\s\up13(→))分別表示A,B處所受的力,10N的重力用eq\o(CG,\s\up13(→))表示,則eq\o(CE,\s\up13(→))+eq\o(CF,\s\up13(→))=eq\o(CG,\s\up13(→))(如圖所示).因為∠ECG=180°-150°=30°,∠FCG=180°-120°=60°,所以|eq\o(CE,\s\up13(→))|=|eq\o(CG,\s\up13(→))|cos30°=10×eq\f(\r(3),2)=5eq\r(3)(N),|eq\o(CF,\s\up13(→))|=|eq\o(CG,\s\up13(→))|cos60°=10×eq\f(1,2)=5(N).故A和B處所受力的大小分別為5eq\r(3)N,5N.13.如圖所示,平行四邊形ABCD中,對角線AC與BD交于點O,P為平面內任意一點,求證:eq\o(PA,\s\up13(→))+eq\o(PB,\s\up13(→))+eq\o(PC,\s\up13(→))+eq\o(PD,\s\up13(→))=4eq\o(PO,\s\up13(→)).證明:eq\o(PO,\s\up13(→))=eq\o(PA,\s\up13(→))+eq\o(AO,\s\up13(→)),①eq\o(PO,\s\up13(→))=eq\o(PD,\s\up13(→))+eq\o(DO,\s\up13(→)),②eq\o(PO,\s\up13(→))=eq\o(PB,\s\up13(→))+eq\o(BO,\s\up13(→)),③eq\o(PO,\s\up13(→))=eq\o(PC,\s\up13(→))+eq\o(CO,\s\up13(→)),④因為O為平行四邊形ABCD對角線的交點,所以eq\o(AO,\s\up13(→))=eq\o(OC,\s\up13(→))=-eq\o(CO,\s\up13(→)),eq\o(BO,\s\up13(→))=eq\o(OD,\s\up13(→))=-eq\o(DO,\s\up13(→)).①+②+③+④,得4eq\o(PO,\s\up13(→))=eq\o(PA,\s\up13(→))+eq\o(PB,\s\up13(→))+eq\o(PC,\s\up13(→))+eq\o(PD,\s\up13(→))+(eq\o(AO,\s\up13(→))+eq\o(CO,\s\up13(→)))+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年醫保知識測試題庫:醫保基金監管案例及答案解析試卷
- 2025年美發師創意造型考核試卷:美發行業前沿技術與創新設計試題
- 2025年美發師(初級)實操技能考核試卷:實操項目與實操經驗
- 2025年美發師實操技能考核試卷:美發師發型設計作品創作資源與實操試題
- 2025年美發師創意造型考核試卷:美發師行業發展趨勢預測與試題
- 秘密載體銷毀管理制度
- 社區家長教育管理制度
- 對海外公司管理制度
- 少先隊規章管理制度
- 常態化規劃管理制度
- GB/T 10810.1-2025眼鏡鏡片第1部分:單焦和多焦
- 2024年煙臺市煙臺山醫院招聘考試真題
- 酒店前臺培訓內容
- 國開本科《人文英語3》期末機考總題庫及答案
- 2025年包養合同模板
- 《SPE固相萃取技術》課件
- 高中數學復習 導數壓軸大題歸類 (原卷版)
- 環境友好型飛機內飾-深度研究
- 《crrt低血壓的處理》課件
- GB/T 23694-2024風險管理術語
- 馬詩聽評課記錄范文
評論
0/150
提交評論